随州市重点中学2024年九年级数学第一学期开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)-个多边形的内角和等于它的外角和的两倍,则这个多边形的边数为( )
A.6B.7C.8D.9
2、(4分)在一次中学生田径运动会上,男子跳高项目的成绩统计如下:
表中表示成绩的一组数据中,众数和中位数分别是
A.,B.,C.,D.,
3、(4分)下列图书馆的标志中,是中心对称图形的是( )
A.B.
C.D.
4、(4分)如图,反比例函数的图象与菱形ABCD的边AD交于点,则函数图象在菱形ABCD内的部分所对应的x的取值范围是( ).
A.<x<2或-2<x<-B.-4<x<-1
C.-4<x<-1或1<x<4D.<x<2
5、(4分)下列几组数中,能作为直角三角形三边长度的是( )
A.6,9,10B.5,12,17C.4,5,6D.1,,
6、(4分)一次函数y=kx+m的图象如图所示,若点(0,a),(﹣2,b),(1,c)都在函数的图象上,则下列判断正确的是( )
A.a<b<cB.c<a<bC.a<c<bD.b<a<c
7、(4分)一次函数y = x+2的图象与y轴的交点坐标为( )
A.(0,2)B.(0,﹣2)C.(2,0)D.(﹣2,0)
8、(4分)如果1≤a≤,则+|a﹣1|的值是( )
A.1B.﹣1C.2a﹣3D.3﹣2a
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,AD是△ABC的角平分线,若AB=8,AC=6,则 =_____.
10、(4分)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,如果AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,那么DP:DC等于_____.
11、(4分)如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为 .
12、(4分)如图,在菱形ABCD中,∠ABC=120°,E是AB边的中点,P是AC边上一动点,PB+PE的最小值是,则AB的长为______.
13、(4分)方程的解为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校学生会在得知田同学患重病且家庭困难时,特向全校3000名同学发起“爱心”捐款活动,为了解捐款情况,学生会随机调查了该校某班学生的捐款情况,并将得到的数据绘制成如下两个统计图,请根据相关信息解答下列问题.
(1)该班的总人数为 ______ 人,将条形图补充完整;
(2)样本数据中捐款金额的众数 ______ ,中位数为 ______ ;
(3)根据样本数据估计该校3000名同学中本次捐款金额不少于20元有多少人?
15、(8分) “母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?
16、(8分)已知,关于x的一次函数y=(1﹣3k)x+2k﹣1,试回答:
(1)k为何值时,图象交x轴于点(,0)?
(2)k为何值时,y随x增大而增大?
17、(10分)如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造PCOD.在线段OP延长线上一动点E,且满足PE=AO.
(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;
(2)当点P运动的时间为秒时,求此时四边形ADEC的周长是多少.
18、(10分)解方程:(1) (2)解方程x2-4x+1=0
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系xOy中,直线与x,y轴分别交于点A,B,若将该直线向右平移5个单位,线段AB扫过区域的边界恰好为菱形,则k的值为_____.
20、(4分)直角三角形的两直角边是3和4,则斜边是____________
21、(4分)如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是 .
22、(4分)在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是________.
23、(4分)如图,正方形CDEF内接于,,,则正方形的面积是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图所示,的顶点在的网格中的格点上.
(1)画出绕点A逆时针旋转得到的;
(2)在图中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为中心对称图形.
25、(10分)已知:OC平分∠AOB,点P、Q都是OC上不同的点,PE⊥OA,PF⊥OB,垂足分别为E、F,连接EQ、FQ.求证:FQ=EQ
26、(12分)用适当的方法解下列方程:
(1)x(2﹣x)=x2﹣2
(2)(2x+5)2﹣3(2x+5)+2=0
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据题意得(n-2)•180=720,
解得:n=6,
故选A.
2、B
【解析】
根据出现最多的数为众数解答;
按照从小到大的顺序排列,然后找出中间的一个数即为中位数.
【详解】
出现次数最多的数为1.55m,是众数;
21个数按照从小到大的顺序排列,中间一个是1.60m,所以中位数是1.60m.
故选B.
考查了众数,中位数的定义,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
3、C
【解析】
根据中心对称图形的概念判断即可.
【详解】
解:A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、是中心对称图形,故此选项正确;
D、不是中心对称图形,故此选项错误.
故选:C.
此题主要考查了中心对称图形的概念.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
4、C
【解析】
根据反比例函数的图象是以原点为对称中心的中心对称图形,菱形是以对角线的交点为对称中心的中心对称图形,可得BC边与另一条双曲线的交点坐标,即可得答案.
【详解】
∵反比例函数是以原点为对称中心的中心对称图形,菱形是以对角线的交点为对称中心的中心对称图形,
∴BC边与另一条双曲线的交点坐标为(1,-2),(4,),
∴图象在菱形ABCD内的部分所对应的x的取值范围是-4<x<-1或1<x<4.
故选C.
本题主要考查反比例函数的性质及菱形的性质,反比例函数的图象是以原点为对称中心的中心对称图形;菱形是以对角线的交点为对称中心的中心对称图形;熟练掌握反比例函数及菱形图象的性质是解题关键.
5、D
【解析】
要求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:A、,故不是直角三角形,故错误;
B、,故不是直角三角形,故错误;
C、,故不是直角三角形,故错误;
D、 故是直角三角形,故正确.
故选:D.
本题考查的是勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
6、B
【解析】
由一次函数y=kx+m的图象,可得y随x的增大而减小,进而得出a,b,c的大小关系.
【详解】
解:由图可得,y随x的增大而减小,
∵﹣2<0<1,
∴c<a<b,
故选:B.
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
7、A
【解析】
分析:在解析式中,令y=0,即可求得与x轴交点的坐标了.
详解:当y=0时,x+2=0,解得x=−2,
所以一次函数的图象与x轴的交点坐标为(−2,0).
故选D.
点睛:本题考查了一次函数图像上点的坐标特征.解题的关键点:与x轴的交点即纵坐标为零.
8、A
【解析】
直接利用a的取值范围进而化简二次根式以及绝对值得出答案.
【详解】
解:
=2﹣a+a﹣1
=1.
故选:A.
此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4:3
【解析】
作DE⊥AB于点E,DF⊥AC于点F,
∵AD平分∠BAC,
∴DE=DF,
===.
故答案为4∶3.
点睛:本题关键在于利用角平分线的性质得出两个三角形的高相等,将两个三角形面积之比转化为对应的底之比.
10、
【解析】
连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,根据平行四边形的性质得到AD∥BC,根据平行线的性质得到∠CBN=∠DAB=60°,根据勾股定理得到AF=,根据三角形和平行四边形的面积公式即可得到结论.
【详解】
连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∵∠DAB=60°,
∴∠CBN=∠DAB=60°,
∴∠BFN=∠MCB=30°,
∵AB:BC=3:2,
∴设AB=3a,BC=2a,
∴CD=3a,
∵AE:EB=1:2,F是BC的中点,
∴BF=a,BE=2a,
∵∠FNB=∠CMB=90°,∠BFN=∠BCM=30°,
∴BM=BC=a,BN=BF=a,FN=a,CM=a,
∴AF=,
∵F是BC的中点,
∴S△DFA=S平行四边形ABCD,
即AF×DP=CD×CM,
∴PD=,
∴DP:DC=.
故答案为:.
本题考查了平行四边形的性质,平行四边形面积,勾股定理,三角形的面积,含30度角的直角三角形等知识点的应用,正确的作出辅助线是解题的关键.
11、1.
【解析】
试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,
则AD=1,BF=BC+CF=BC+1,DF=AC,
又∵AB+BC+AC=1,
∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.
考点:平移的性质.
12、1
【解析】
分析:找出B点关于AC的对称点D,连接DE,则DE就是PE+PB的最小值,进而可求出AB的值.
详解:连接DE交AC于P,连接BD,BP,
由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,
∴PE+PB=PE+PD=DE,
即DE就是PE+PB的最小值,
∵∠BAD=60°,AD=AB,
∴△ABD是等边三角形,
∵AE=BE,
∴DE⊥AB(等腰三角形三线合一的性质)
在Rt△ADE中,DE=,
∴AD1=4,
∴AD=AB=1.
点睛:本题主要考查轴对称-最短路线问题和菱形的性质的知识点,解答本题的关键,此题是道比较不错的习题.
13、1
【解析】
根据无理方程的解法,首先,两边平方解出x的值,然后验根,解答即可.
【详解】
解:两边平方得:2x+1=x2
∴x2﹣2x﹣1=0,
解方程得:x1=1,x2=﹣1,
检验:当x1=1时,方程的左边=右边,所以x1=1为原方程的解,
当x2=﹣1时,原方程的左边≠右边,所以x2=﹣1不是原方程的解.
故答案为1.
此题考查无理方程的解,解题关键在于掌握运算法则
三、解答题(本大题共5个小题,共48分)
14、(1)50;补图见解析;(2)10,12.5;(3)660人
【解析】
(1)根据统计图中的数据可以求得额该班的总人数,可以求得捐款10元的人数,从而可以将条形统计图补充完整;
(2)根据补全的条形统计图可以得到相应的众数和中位数;
(3)根据统计图可以求得不少于20元有多少人数的占比,再乘以总人数即可.
【详解】
解:(1)14÷28%=50,
捐款10元的人数为:50-9-14-7-4=16,
故答案为:50,补全的条形统计图如右图所示,
(2)由补全的条形统计图可得,
样本数据中捐款金额的众数是10,中位数是: =12.5,
故答案为:10,12.5;
(3)捐款金额不少于20元的人数 人,
即该校3000名同学本次捐款金额不少于20元有660人.
此题考查条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答
15、30元
【解析】
试题分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.
解:设第一批盒装花的进价是x元/盒,则
2×=,
解得 x=30
经检验,x=30是原方程的根.
答:第一批盒装花每盒的进价是30元.
考点:分式方程的应用.
16、(1)k=﹣1;(2)
【解析】
(1)把点(,0)代入y=(1﹣3k)x+2k﹣1,列出关于k的方程,求解即可;
(2)根据1﹣3k>0时,y随x增大而增大,解不等式求出k的取值范围即可.
【详解】
解:(1)∵关于x的一次函数y=(1﹣3k)x+2k﹣1的图象交x轴于点(,0),
∴(1﹣3k)+2k﹣1=0,
解得k=﹣1;
(2)1﹣3k>0时,y随x增大而增大,
解得.
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.
17、 (1)证明见解析;(2) 四边形ADEC的周长为6+3.
【解析】
(1)连接CD交AE于F,根据平行四边形的性质得到CF=DP,OF=PF,根据题意得到AF=EF,又CF=DP,根据平行四边形的判定定理证明即可;
(2)根据题意计算出OC、OP的长,根据勾股定理求出AC、CE,根据平行四边形的周长公式计算即可.
【详解】
(1)证明:如答图,连接CD交AE于F.
∵四边形PCOD是平行四边形,
∴CF=DF,OF=PF.
∵PE=AO,
∴AF=EF.
又∵CF=DF,
∴四边形ADEC为平行四边形.
(2)解:当点P运动的时间为秒时,
OP=,OC=3,
则OE=.
由勾股定理,得AC==3,
CE==.
∵四边形ADEC为平行四边形,
∴四边形ADEC的周长为(3+)×2=6+3.
本题考查的知识点是平行四边形的性质和判定、勾股定理的应用,解题关键是掌握对角线互相平分的四边形是平行四边形.
18、(1)x1=1,;(2),.
【解析】
(1)先把原分式方程化为整式方程求出x的值,再把x的值代入最简公分母进行检验即可.(2)利用求根公式求解即可.
【详解】
(1)解:。
去分母,得:x(3x-2)+5(2x-3)=4(2x-3)(3x-2),
化简,得:7x2-20x+13=0,解得:x1=1,
(2) ,
,.
本题考查的是解一元二次方程和分式方程的解法,解题的关键是注意求根公式的运用及解分式方程需要检验.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据菱形的性质知AB=2,由一次函数图象的性质和两点间的距离公式解答.
【详解】
令y=0,则x=-,即A(-,0).
令x=0,则y=3,即B(0,3).
∵将该直线向右平移2单位,线段AB扫过区域的边界恰好为菱形,
∴AB=2,则AB2=1.
∴(-)2+32=1.
解得k=.
故答案是:.
考查了菱形的性质和一次函数图象与几何变换,解题的关键是根据菱形的性质得到AB=2.
20、1
【解析】
在直角三角形中,已知两直角边根据勾股定理可以计算斜边.
【详解】
在直角三角形中,三边边长符合勾股定理,
已知两直角边为3、4,则斜边边长==1,
故答案为 1.
本题考查了直角三角形中的运用,本题中正确的运用勾股定理求斜边的长是解题的关键.
21、
【解析】
试题分析:∵正方形ODBC中,OC=1,∴根据正方形的性质,BC=OC=1,∠BCO=90°。
∴在Rt△BOC中,根据勾股定理得,OB=。
∴OA=OB=。
∵点A在数轴上原点的左边,∴点A表示的数是。
22、PA=PB=PC
【解析】
解:∵边AB的垂直平分线相交于P,
∴PA=PB,
∵边BC的垂直平分线相交于P,
∴PB=PC,
∴PA=PB=PC.
故答案为:PA=PB=PC.
23、0.8
【解析】
根据题意分析可得△ADE∽△EFB,进而可得2DE=BF,2AD=EF=DE,由勾股定理得,DE2+AD2=AE2,可解得DE,正方形的面积等于DE的平方问题得解.
【详解】
∵根据题意,易得△ADE∽△EFB,
∴BE:AE=BF:DE=EF:AD=2:1,
∴2DE=BF,2AD=EF=DE,
由勾股定理得,DE+AD=AE,
解得:DE=EF=,
故正方形的面积是 =,
故答案为:0.8
本题考查相似三角形,熟练掌握相似三角形的判定及基本性质是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析.
【解析】
(1)由题意可知旋转中心、旋转角、旋转方向,根据旋转的画图方法作图即可;
(2)如图有三种情况,构造平行四边形即可.
【详解】
解:(1)如图即为所求
(2)如图,D、D’、D’’均为所求.
本题考查了图形的旋转及中心对称图形,熟练掌握作旋转图形的方法及中心对称图形的定义是解题的关键.
25、证明见解析.
【解析】
分析:根据角平分线的性质得出PE=PF,结合OP=OP得出Rt△OPE和Rt△OPF全等,从而得出OC是线段EF的垂直平分线,从而得出答案.
详解:证明:∵OC平分AOB,PE⊥OA,PF⊥OB, ∴ PE=PF,
在Rt△OPE与Rt△OPF中, OP=OP,PE=PF,∴Rt△OPE≌Rt△OPF, ∴OE=OF,
∴OC是线段EF的垂直平分线, ∴FQ=EQ.
点睛:本题主要考查的是角平分线的性质以及中垂线的性质,属于基础题型.根据题意得出OC是线段EF的中垂线是解决这个问题的关键.
26、(1)x1=,x1=;(1)x1=﹣,x1=﹣1.
【解析】
(1)整理后求出b1﹣4ac的值,再代入公式求出即可;
(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
(1)x(1﹣x)=x1﹣1,整理得:x1﹣x﹣1=0,△=b1﹣4ac=(﹣1)1﹣4×1×(﹣1)=5,x,∴x1,x1;
(1)(1x+5)1﹣3(1x+5)+1=0,(1x+5﹣1)(1x+5﹣1)=0,1x+5﹣1=0,1x+5﹣1=0,∴x1,x1=﹣1.
本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解答此题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
成绩
人数
2
8
6
4
1
台州市重点中学2025届九年级数学第一学期开学调研模拟试题【含答案】: 这是一份台州市重点中学2025届九年级数学第一学期开学调研模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
沈阳市重点中学2025届九年级数学第一学期开学调研模拟试题【含答案】: 这是一份沈阳市重点中学2025届九年级数学第一学期开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
秦皇岛市重点中学2024年数学九年级第一学期开学调研模拟试题【含答案】: 这是一份秦皇岛市重点中学2024年数学九年级第一学期开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。