终身会员
搜索
    上传资料 赚现金

    湖北省随州市曾都区实验中学2024年九年级数学第一学期开学统考模拟试题【含答案】

    立即下载
    加入资料篮
    湖北省随州市曾都区实验中学2024年九年级数学第一学期开学统考模拟试题【含答案】第1页
    湖北省随州市曾都区实验中学2024年九年级数学第一学期开学统考模拟试题【含答案】第2页
    湖北省随州市曾都区实验中学2024年九年级数学第一学期开学统考模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省随州市曾都区实验中学2024年九年级数学第一学期开学统考模拟试题【含答案】

    展开

    这是一份湖北省随州市曾都区实验中学2024年九年级数学第一学期开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)正方形具有而菱形不具有的性质是( )
    A.对角线互相平分B.对角线相等
    C.对角线平分一组对角D.对角线互相垂直
    2、(4分)课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用表示,小丽的位置用表示,那么你的位置可以表示成( )
    A.B.C.D.
    3、(4分)点A,B,C,D在数轴上的位置如图所示,则实数对应的点可能是
    A.点AB.点BC.点CD.点D
    4、(4分)方程的根是
    A.B.C.,D.,
    5、(4分)如图,在中,,是的中点,,,若,,
    ①四边形是平行四边形;
    ②是等腰三角形;
    ③四边形的周长是;
    ④四边形的面积是1.
    则以上结论正确的是
    A.①②③B.①②④C.①③④D.②④
    6、(4分)化简的结果是( )
    A.4B.2C.3D.2
    7、(4分)龙华地铁4号线北延计划如期开工,由清湖站开始,到达观澜的牛湖站,长约10.770公里,其中需修建的高架线长1700m.在修建完400m后,为了更快更好服务市民,采用新技术,工效比原来提升了25%.结果比原计划提前4天完成高架线的修建任务.设原计划每天修建xm,依题意列方程得( )
    A.B.
    C.D.
    8、(4分)已知关于的一次函数的图象如图所示,则实数的取值范围为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出_____个平行四边形.
    10、(4分)计算:(﹣4ab2)2÷(2a2b)0=_____.
    11、(4分)一次函数y=2x+6的图象如图所示,则不等式2x+6>0的解集是________,当y≤3时,x的取值范围是________.
    12、(4分)如图,在R△ABC中,∠C=90°,AC=3,BC=4,点P是AB上的一个动点,过点P作PM⊥AC于点M,PN⊥BC于点N,连接MN,则MN的最小值为_____.
    13、(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,AO=3,AE垂直平分OB于点E,则AD的长为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知:四边形ABCD,E,F,G,H是各边的中点.
    (1)求证:四边形EFGH是平行四边形;
    (2)假如四边形ABCD是一个矩形,猜想四边形EFGH是什么图形?并证明你的猜想.
    15、(8分)计算:
    (1) ;
    (2)(﹣1)(+1)+(﹣2)2
    16、(8分)解方程
    (1)+=3 (2)
    17、(10分)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AC于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.
    (1)①求证:四边形BFDE是菱形;②求∠EBF的度数.
    (2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的数量关系,并说明理由;
    (3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.
    18、(10分)已知直线:与轴交于点A.
    (1)A点的坐标为 .
    (2)直线和:交于点B,若以O、A、B、C为顶点的四边形是平行四边形,求点C的坐标 .
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知方程的一个根为,则常数__________.
    20、(4分)正比例函数()的图象过点(-1,3),则=__________.
    21、(4分)如图,菱形ABCD的边长为8cm,∠B=45°,AE⊥BC于点E,则菱形ABCD的面积为_____cm2。
    22、(4分)菱形ABCD的边AB为5 cm,对角线AC为8 cm,则菱形ABCD的面积为_____cm1.
    23、(4分)如图,四边形为正方形,点分别为的中点,其中,则四边形的面积为________________________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图①,点是正方形内一点,,连结,延长交直线于点.
    (1)求证:;
    (2)求证:是等腰三角形;
    (3)若是正方形外一点,其余条件不变,请你画出图形并猜想(1)和(2)中的结论是否仍然成立.(直接写出结论即可).

    25、(10分)某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过220kW•h时实行“基础电价”;第二档是当用电量超过220kW•h时,其中的220kW•h仍按照“基础电价”计费,超过的部分按照“提高电价”收费.设每个家庭月用电量为xkW•h时,应交电费为y元.具体收费情况如图所示,请根据图象回答下列问题:
    (1)“基础电价”是 元/kw•h;
    (2)求出当x>220时,y与x的函数解析式;
    (3)若小豪家六月份缴纳电费121元,求小豪家这个月用电量为多少kW•h?
    26、(12分)一个多边形的外角和是内角和的,求这个多边形的边数.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据正方形和菱形的性质逐项分析可得解.
    【详解】
    根据正方形对角线的性质:平分、相等、垂直;菱形对角线的性质:平分、垂直,
    故选B.
    考点:1.菱形的性质;2.正方形的性质.
    2、C
    【解析】
    以小明为原点建立平面直角坐标系,即可知小亮的坐标.
    【详解】
    解:由题意可得,以小明为原点建立平面直角坐标系,则小亮的位置为.
    故答案为C
    本题考查了平面直角坐标系,用平面直角坐标系表示位置关键是根据已知条件确定平面直角坐标系.
    3、B
    【解析】
    根据被开方数越大算术平方根越大,可得的大小,根据数的大小,可得答案.
    【详解】


    实数对应的点可能是B点,
    故选B.
    本题考查了实数与数轴,利用被开方数越大算术平方根越大得出是解题关键.
    4、C
    【解析】
    由题意推出x=0,或(x-1)=0,解方程即可求出x的值
    【详解】

    ,,
    故选.
    此题考查解一元二次方程-因式分解法,掌握运算法则是解题关键
    5、A
    【解析】
    证明AC∥DE,再由条件CE∥AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用三角函数计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2,利用△ACB和△CBE的面积和可得四边形ACEB的面积.
    【详解】
    ①,,



    四边形是平行四边形,故①正确;
    ②是的中点,,

    是等腰三角形,故②正确;
    ③,,
    ,,
    四边形是平行四边形,


    ,,


    四边形的周长是故③正确;
    ④四边形的面积:,故④错误,
    故选.
    此题主要考查了平行四边形的判定和性质,以及三角函数的应用,关键是利用三角函数值计算出CB长.
    6、B
    【解析】
    试题解析:.
    故选B.
    考点:二次根式的化简.
    7、C
    【解析】
    设原计划每天修建xm,则实际每天修建(1+25%)xm,根据题意可得,增加工作效率之后比原计划提前4天完成任务,据此列方程.
    【详解】
    解:设原计划每天修建xm,则实际每天修建(1+25%)xm,由题意得:

    故选C.
    8、B
    【解析】
    由一次函数y=(1-m)x+2的图象不经过第四象限,则1-m>0,通过解不等式可得到m的取值范围.
    【详解】
    ∵关于x的一次函数y=(1-m)x+2的图象不经过第四象限,
    ∴1-m>0,
    解得,.
    故选B..
    本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据全等三角形的性质及平行四边形的判定,可找出现1个平行四边形.
    【详解】
    解:两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出1个平行四边形.
    故答案为1.
    此题主要考查学生对平行四边形的判定的掌握情况和读图能力,注意找图过程中,要做到不重不漏.
    10、16a2b1
    【解析】
    直接利用整式的除法运算法则以及积的乘方运算法则计算得出答案.
    【详解】
    解:(-1ab2)2÷(2a2b)0=16a2b1÷1=16a2b1,
    故答案为:16a2b1.
    本题主要考查了整式的乘除运算和零指数幂,正确掌握相关运算法则是解题关键.
    11、x>﹣3 x≤﹣
    【解析】
    当x>−3时,2x+6>0;
    解不等式2x+6⩽3得x⩽﹣,即当x⩽﹣时,y⩽3.
    故答案为x>−3;x⩽﹣.
    12、2.1
    【解析】
    连接,利用勾股定理列式求出,判断出四边形是矩形,根据矩形的对角线相等可得,再根据垂线段最短可得时,线段的值最小,然后根据三角形的面积公式列出方程求解即可.
    【详解】
    解:如图,连接.
    ,,,

    ,,,
    四边形是矩形,

    由垂线段最短可得时,线段的值最小,
    此时,,
    即,
    解得.
    故答案为:2.1.
    本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出时,线段的值最小是解题的关键,难点在于利用三角形的面积列出方程.
    13、3
    【解析】
    由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.
    【详解】
    ∵四边形ABCD是矩形,
    ∴OB=OD,OA=OC,AC=BD,
    ∴OA=OB,
    ∵AE垂直平分OB,
    ∴AB=AO,
    ∴OA=AB=OB=3,
    ∴BD=2OB=6,
    ∴AD=;
    故答案是:3.
    考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)四边形EFGH是菱形,理由见解析
    【解析】
    (1)根据三角形中位线定理可EF∥AC∥HG,HE∥BD∥GF,即可解答.
    (2)根据菱形是邻边相等的平行四边形,证明EF=AC=BD=EH,即可解答.
    【详解】
    (1)∵E,F,G,H是各边的中点,
    ∴EF∥AC∥HG,HE∥BD∥GF,
    ∴四边形EFGH是平行四边形;
    (2)四边形ABCD是一个矩形,四边形EFGH是菱形;
    ∵四边形ABCD是矩形,
    ∴AC=BD,
    ∴EF=AC=BD=EH,
    ∵四边形EFGH是平行四边形,
    ∴四边形EFGH是菱形.
    此题考查平行四边形的判定,菱形的判定,解题关键在于利用三角形中位线定理进行求证,掌握各判定定理.
    15、 (1);(2)8-
    【解析】
    (1)根据二次根式的混合运算法则进行计算即可.
    (2)利用完全平方公式和平方差公式进行计算即可.
    【详解】
    (1)原式=3++2﹣
    =3+2+
    =;
    (2)原式=2﹣1+3﹣4+4
    =8﹣4.
    此题考查二次根式的混合运算,解题关键在于利用平方差公式和完全平方公式进行计算.
    16、 (1)x=;(2)x=1
    【解析】
    (1)按步骤:①去分母;②求出整式方程的解;③检验;④得出结论解分式方程;
    (2)按步骤:①去分母;②求出整式方程的解;③检验;④得出结论解分式方程;
    【详解】
    (1)+=3
    3-2=3(2x-2)
    1=6x-6
    x=,
    当x=时,2x-2≠0,所以x=是方程的解;
    (2)
    x-3+2(x+3)=6
    x-3+2x+6=6
    3x=3
    x=1.
    当x=1时,x2-9≠0,所以x=1是方程的解.
    考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
    17、(1)①证明见解析;②;(2);(3).
    【解析】
    (1)①由,推出,,推出四边形是平行四边形,再证明即可.
    ②先证明,推出,延长即可解决问题.
    (2).只要证明是等边三角形即可.
    (3)结论:.如图3中,将绕点逆时针旋转得到,先证明,再证明是直角三角形即可解决问题.
    【详解】
    (1)①证明:如图1中,
    四边形是矩形,
    ,,

    在和中,


    ,,
    四边形是平行四边形,
    ,,

    四边形是菱形.
    ②平分,





    ,,


    (2)结论:.
    理由:如图2中,延长到,使得,连接.
    四边形是菱形,,
    ,,

    在和中,


    ,,



    是等边三角形,

    在和中,


    ,,,




    是等边三角形,
    在中,,,


    (3)结论:.
    理由:如图3中,将绕点逆时针旋转得到,

    四点共圆,
    ,,



    在和中,



    ,,

    ,,

    本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.
    18、(1)(0,2);(2)(3,2)或(3,6)或(-3,-2).
    【解析】
    (1),令x=0,则y=2,即可求解;
    (2)分AO是平行四边形的一条边、AO是平行四边形的对角线,两种情况分别求解即可.
    【详解】
    解:(1),令x=0,则y=2,
    则点A(0,2),
    故答案为(0,2);
    (2)联立直线l1和l2的表达式并解得:x=3,
    故点B(3,4),
    ①当AO是平行四边形的一条边时,
    则点C(3,2)或(3,6);
    ②当AO是平行四边形的对角线时,
    设点C的坐标为(a,b),点B(3,4),
    BC的中点和AO的中点坐标,
    由中点坐标公式:a+3=0,b+4=2,
    解得:a=-3,b=-2,
    故点C(-3,-2);
    故点C坐标为:(3,2)或(3,6)或(-3,-2).
    本题考查的是一次函数综合运用,涉及到平行四边形的性质,其中(2),要分类求解,避免遗漏.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    将x=2代入方程,即可求出k的值.
    【详解】
    解:将x=2代入方程得:,解得k=.
    本题考查了一元二次方程的解,理解方程的解是方程成立的未知数的值是解答本题的关键
    20、-1
    【解析】
    将(-1,1)代入y=kx,求得k的值即可.
    【详解】
    ∵正比例函数()的图象经过点(-1,1),
    ∴1=-k,
    解得k=-1,
    故答案为:-1.
    此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
    21、32
    【解析】
    根据AE⊥BC,∠B=45°知△AEB为等腰直角三角形.在Rt△AEB中,根据勾股定理即可得出AE的长度,根据面积公式即可得出菱形ABCD的面积.
    【详解】
    四边形ABCD为菱形,则AB=BC=CD=DA=8cm,
    ∵AE⊥BC且∠B=45°,
    ∴△AEB为等腰直角三角形,
    ∴AE=BE,
    在△AEB中,根据勾股定理可以得出+=,
    ∴2=,
    ∴AE====4,
    ∴菱形ABCD的面积即为BC×AE=8×4=32.
    本题目主要考查菱形的性质及面积公式,本题的解题关键在于通过勾股定理得出菱形的高AE的长度.
    22、14
    【解析】
    【分析】连接BD.利用菱形性质得BD=1OB,OA=AC,利用勾股定理求OB,通过对角线求菱形面积.
    【详解】连接BD. AC⊥BD,
    因为,四边形ABCD是菱形,
    所以,AC⊥BD,BD=1OB,OA=AC=4cm,
    所以,再Rt△AOB中,
    OB=cm,
    所以,BD=1OB=6 cm
    所以,菱形的面积是
    cm1
    故答案为:14
    【点睛】本题考核知识点:菱形的性质.解题关键点:利用勾股定理求菱形的对角线.
    23、4.
    【解析】
    先判定四边形EFGH为矩形,再根据中位线的定理分别求出EF、EH的长度,即可求出四边形EFGH的面积.
    【详解】
    解:∵四边形ABCD是正方形,点E、F、G、H分别是AB、BC、CD、DA的中点,
    ∴△AEH、△BEF、△CFG、△DGH都为等腰直角三角形,
    ∴∠HEF、∠EFG、∠FGH、∠GHE都为直角,
    ∴四边形EFGH是矩形,
    边接AC,则AC=BD=4,
    又∵EH是△ABD的中位线,
    ∴EH=BD=2,
    同理EF=AC=2,
    ∴四边形EFGH的面积为2×2=4.
    故答案为4.
    本题考查了正方形的性质,矩形的判定,三角形中位线定理.
    二、解答题(本大题共3个小题,共30分)
    24、(1)详见解析;(2)详见解析;(3)图详见解析,(1)和(2)中的结论仍然成立.
    【解析】
    (1)由等腰三角形的性质可证∠CDE=∠DCE,进而得到,然后根据“SAS”可证;
    (2)由全等三角形的性质可知AE=BE,从而,根据余角的性质可证∠EAF=∠AFE,可证是等腰三角形;
    (3)分点E在CD的右侧和点E在AB的左侧两种情况说明即可.
    【详解】
    (1)证明:∵四边形是正方形,
    ∴AD=BC,.

    ,即;

    (2)证明:,


    ;,
    是等腰三角形.
    (3)(1)和(2)中的结论仍然成立.
    由可知点E只能在CD的右侧或AB的左侧.
    如图,当点E在CD的右侧时,
    ∵四边形是正方形,
    ∴AD=BC,.

    ,即;


    ∵AD//BC,
    ∴∠AFE=∠CBE,


    是等腰三角形.
    如图,当点E在AB的左侧时,同理可证(1)和(2)中的结论仍然成立.
    本题考查了正方形的性质,全等三角形的判定与性质,余角的性质,平行线的性质,以及等腰三角形的判定与性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
    25、(1)0.5;(2)y=0.55x﹣11;(3)小豪家这个月用电量为1kW•h.
    【解析】
    (1)由用电220度费用为110元可得;
    (2)当x>220时,待定系数法求解可得此时函数解析式;
    (3)由121>110知,可将y=121代入(2)中函数解析式求解可得.
    【详解】
    (1)“基础电价”是=0.5元/度,
    故答案为:0.5;
    (2)当x>220时,设y=kx+b,
    由图象可得:,
    解得,
    ∴y=0.55x﹣11;
    (3)∵y=121>110
    ∴令0.55x﹣11=121,
    得:x=1.
    答:小豪家这个月用电量为1kW•h.
    本题主要考查一次函数的图象与待定系数求函数解析式,分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,理解每个区间的实际意义是解题关键.
    26、七边形.
    【解析】
    分析:多边形的内角和定理为(n-2)×180°,多边形的外角和为360°,根据题意列出方程求出n的值.
    详解:根据题意可得: 解得:
    点睛:本题主要考查的是多边形的内角和公式以及外角和定理,属于基础题型.明白这两个公式是解题的关键.
    题号





    总分
    得分

    相关试卷

    2024年湖北省随州市曾都区九上数学开学统考模拟试题【含答案】:

    这是一份2024年湖北省随州市曾都区九上数学开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖北省随州市曾都区唐县数学九年级第一学期开学监测模拟试题【含答案】:

    这是一份2024-2025学年湖北省随州市曾都区唐县数学九年级第一学期开学监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖北省随州市随州市曾都区尚市镇中学心学校2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案:

    这是一份湖北省随州市随州市曾都区尚市镇中学心学校2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了已知二次函数y=2,下列关系式中,是反比例函数的是,如图,△OAB∽△OCD,OA,的值等于等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map