|试卷下载
终身会员
搜索
    上传资料 赚现金
    台州市重点中学2025届九年级数学第一学期开学调研模拟试题【含答案】
    立即下载
    加入资料篮
    台州市重点中学2025届九年级数学第一学期开学调研模拟试题【含答案】01
    台州市重点中学2025届九年级数学第一学期开学调研模拟试题【含答案】02
    台州市重点中学2025届九年级数学第一学期开学调研模拟试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    台州市重点中学2025届九年级数学第一学期开学调研模拟试题【含答案】

    展开
    这是一份台州市重点中学2025届九年级数学第一学期开学调研模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列各组线段能构成直角三角形的是( )
    A.B.C.D.
    2、(4分)将一元二次方程-6x-5=0化成=b的形式,则b等于( )
    A.4B.-4C.14D.-14
    3、(4分)如图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则选项图象能大致反映y与x的函数关系的是( )
    A.B.C.D.
    4、(4分)如图,四边形ABCD为矩形,依据尺规作图的痕迹,∠α与∠β的度数之间的关系为( )
    A.β= 180-αB.β=180°-C.β=90°-αD.β=90°-
    5、(4分)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
    A.12B.24C.12D.16
    6、(4分)如图,四边形 ABCD 中,AC=a,BD=b,且 AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有( )
    ①四边形A2B2C2D2是矩形;
    ②四边形A4B4C4D4是菱形;
    ③四边形A5B5C5D5的周长是
    ④四边形AnBnCnDn的面积是
    A.①②③B.②③④C.①②D.②③
    7、(4分)如图,在菱形中,,的垂直平分线交对角线于点,为垂足,连结,则等于( )
    A.B.C.D.
    8、(4分)如图,AB∥CD,点E在BC上,且CD=CE,∠D=75°,则∠B的度数为( ).
    A.75°B.40°C.30°D.15°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如果一个多边形的每一个外角都等于,则它的内角和是_________.
    10、(4分)如果,那么的值是___________.
    11、(4分)已知一次函数y=kx+b的图象如图,则关于x的不等式kx+b>0的解集是______.
    12、(4分)如图,已知等边的边长为8,是中线上一点,以为一边在下方作等边,连接并延长至点为上一点,且,则的长为_________.
    13、(4分)如图,平行四边形中,,,∠,点是的中点,点在的边上,若为等腰三角形,则的长为__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC
    于点E、F、G,连接DE、DG.
    (1)求证:四边形DGCE是菱形;
    (2)若∠ACB=30°,∠B=45°,CG=10,求BG的长.
    15、(8分)已知在线段AB上有一点C(点C不与A、B重合且AC>BC),分别以AC、BC为边作正方形ACED和正方形BCFG,其中点F在边CE上,连接AG.
    (1)如图1,若AC=7,BC=5,则AG=______;
    (2)如图2,若点C是线段AB的三等分点,连接AE、EG,求证:△AEG是直角三角形.
    16、(8分)解不等式组,并将解集在数轴上表示出来.
    17、(10分)在的正方形网格中(每个小正方形的边长为1),线段在网格中位置如图.
    (1)______;
    (2)请画出一个,其中在格点上,且三边均为无理数;
    (3)画出一个以为边,另两个顶点、也在格点上的菱形,其面积是______.
    18、(10分)如图,已知点A.B在双曲线y= (x>0)上,AC⊥x轴于C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点.
    (1)设A的横坐标为m,试用m、k表示B的坐标.
    (2)试判断四边形ABCD的形状,并说明理由.
    (3)若△ABP的面积为3,求该双曲线的解析式.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,正方形ABCD的边长为8,点E是BC上的一点,连接AE并延长交射线DC于点F,将△ABE沿直线AE翻折,点B落在点N处,AN的延长线交DC于点M,当AB=2CF时,则NM的长为_____.
    20、(4分)不等式4﹣3x>2x﹣6的非负整数解是_____.
    21、(4分)下表是某校女子羽毛球队队员的年龄分布:
    则该校女子排球队队员年龄的中位数为__________岁.
    22、(4分)如图,在四边形ABCD中,AD∥BC,且AD=12cm.点P从点A出发,以3cm/s的速度在射线AD上运动;同时,点Q从点C出发,以1cm/s的速度在射线CB上运动.运动时间为t,当t=______秒(s)时,点P、Q、C、D构成平行四边形.
    23、(4分)某中学人数相等的甲乙两班学生参加了同一次数学测试,两班的平均分、方差分别为甲=82分,乙=82分,S甲2=245分,S乙2=90分,那么成绩较为整齐的是______班(填“甲”或“乙”)。
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.
    (1)求A型空调和B型空调每台各需多少元;
    (2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?
    (3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?
    25、(10分)如图,已知平行四边形ABCD,
    (1)= ;(用的式子表示)
    (2)= ;(用的式子表示)
    (3)若AC⊥BD,||=4,||=6,则|+|= .
    26、(12分)某中学积极倡导阳光体育运动,提高中学生身体素质,开展跳绳比赛,下表为该校6年1班40人参加跳绳比赛的情况,若标准数量为每人每分钟100个.
    (1)求6年1班40人一分钟内平均每人跳绳多少个?
    (2)规定跳绳超过标准数量,每多跳1个绳加3分;规定跳绳未达到标准数量,每少跳1个绳,扣1分,若班级跳绳总积分超过250分,便可得到学校的奖励,通过计算说明6年1班能否得到学校奖励?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
    【详解】
    A、12+22≠22,不能构成直角三角形;
    B、72+122≠132,不能构成直角三角形;
    C、52+82≠102,不能构成直角三角形;
    D、,能构成直角三角形.
    故选:D.
    本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.
    2、C
    【解析】
    解:因为x2-6x-5=0
    所以x2-6x=5,
    配方得x2-6x+9=5+9,
    所以,
    所以b=14,
    故选C.
    本题考查配方法,掌握配方法步骤正确计算是解题关键.
    3、B
    【解析】
    根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.
    【详解】
    由题意可得,
    点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,
    点P到B→C的过程中,y=2(x-2)=x-2(2<x≤6),故选项A错误,
    点P到C→D的过程中,y=24=4(6<x≤8),故选项D错误,
    点P到D→A的过程中,y=2(12-x)=12-x(8由以上各段函数解析式可知,选项B正确,
    故选B.
    本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.
    4、D
    【解析】
    如图,根据题意得∠DAC=∠α,∠EAO=∠α,∠AEO=∠β,∠EOA=90°,再根据三角形内角和定理可得β=90°-.
    【详解】
    如图,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠DAC=∠α
    由作图痕迹可得AE平分∠DAC,EO⊥AC
    ∴∠EAO=∠α, ∠EOA=90°
    又∠AEO=∠β,
    ∠EAO+∠AOE+∠AEO=180°,
    ∴∠α+∠β+90°=180°,
    ∴β=90°-
    故选D.
    本题考查了矩形的性质,角平分线以及线段垂直平分线的性质,熟练掌握和运用相关的知识是解题的关键.
    5、D
    【解析】
    如图,连接BE,
    ∵在矩形ABCD中,AD∥BC,∠EFB=60°,
    ∴∠AEF=110°-∠EFB=110°-60°=120°,∠DEF=∠EFB=60°.
    ∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,
    ∴∠BEF=∠DEF=60°.
    ∴∠AEB=∠AEF-∠BEF=120°-60°=60°.
    在Rt△ABE中,AB=AE•tan∠AEB=2tan60°=2.
    ∵AE=2,DE=6,∴AD=AE+DE=2+6=1.
    ∴矩形ABCD的面积=AB•AD=2×1=16.故选D.
    考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.
    6、C
    【解析】
    首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形AnBnCnDn的面积与四边形ABCD的面积间的数量关系来求其面积.
    【详解】
    ①连接A1C1,B1D1.
    ∵在四边形ABCD中,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,
    ∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
    ∴A1D1∥B1C1,A1B1∥C1D1,
    ∴四边形A1B1C1D1是平行四边形;
    ∵AC丄BD,∴四边形A1B1C1D1是矩形,
    ∴B1D1=A1C1(矩形的两条对角线相等);
    ∴A2D2=C2D2=C2B2=B2A2(中位线定理),
    ∴四边形A2B2C2D2是菱形;
    故①错误;
    ②由①知,四边形A2B2C2D2是菱形;
    ∴根据中位线定理知,四边形A4B4C4D4是菱形;
    故②正确;
    ③根据中位线的性质易知,A5B5=
    ∴四边形A5B5C5D5的周长是2×;
    故③正确;
    ④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,
    ∴S四边形ABCD=ab÷2;
    由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,
    四边形AnBnCnDn的面积是.
    故④正确;
    综上所述,②③④正确.
    故选C.
    考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.
    7、D
    【解析】
    连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.
    【详解】
    解:如图,连接BF,
    在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,
    ∠ABC=180°-∠BAD=180°-80°=100°,
    ∵EF是线段AB的垂直平分线, ∴AF=BF,∠ABF=∠BAC=40°,
    ∴∠CBF=∠ABC-∠ABF=100°-40°=60°,
    ∵在△BCF和△DCF中,

    ∴△BCF≌△DCF(SAS),
    ∴∠CDF=∠CBF=60°,
    故选:D.
    本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.
    8、C
    【解析】
    根据等腰三角形两底角相等求出∠C的度数,再根据两直线平行,内错角相等解答即可.
    【详解】
    ∵CD=CE,
    ∴∠D=∠DEC,
    ∵∠D=75°,
    ∴∠C=180°-75°×2=30°,
    ∵AB∥CD,
    ∴∠B=∠C=30°.
    故选C.
    此题考查的知识点是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C的度数.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n-2)•180°,代入公式就可以求出内角和.
    【详解】
    解:多边形边数为:360°÷30°=12,
    则这个多边形是十二边形;
    则它的内角和是:(12-2)•180°=1°.
    故答案为:1.
    本题考查多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.
    10、
    【解析】
    由得到再代入所求的代数式进行计算.
    【详解】
    ∵,
    ∴,
    ∴,
    故答案为:.
    此题考查分式的求值计算,根据已知条件求出m与n的等量关系是解题的关键.
    11、
    【解析】
    直接利用一次函数图象,结合式kx+b>0时,则y的值>0时对应x的取值范围,进而得出答案.
    【详解】
    如图所示:
    关于x的不等式kx+b>0的解集是:x<1.
    故答案为:x<1.
    此题主要考查了一次函数与一元一次不等式,正确利用数形结合是解题关键.
    12、1
    【解析】
    作CG⊥MN于G,证△ACE≌△BCF,求出∠CBF=∠CAE=30°,则可以得出,在Rt△CMG中,由勾股定理求出MG,即可得到的长.
    【详解】
    解:如图示:作CG⊥MN于G,

    ∵△ABC和△CEF是等边三角形,
    ∴AC=BC,CE=CF,∠ACB=∠ECF=10°,
    ∴∠ACB-∠BCE=∠ECF-∠BCE,
    即∠ACE=∠BCF,
    在△ACE与△BCF中

    ∴△ACE≌△BCF(SAS),
    又∵AD是三角形△ABC的中线
    ∴∠CBF=∠CAE=30°,
    ∴,
    在Rt△CMG中,,
    ∴MN=2MG=1,
    故答案为:1.
    本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF≌△BCF.
    13、或或1
    【解析】
    根据点P所在的线段分类讨论,再分析每种情况下腰的情况,然后利用直角三角形的性质和勾股定理分别求值即可.
    【详解】
    解:①当点P在AB上时,由∠ABC=120°,此时只能是以∠PBE为顶角的等腰三角形,BP=BE,过点B作BF⊥PE于点F,如下图所示
    ∴∠FBE=∠ABC=10°,EP=2EF
    ∴∠BEF=90°-∠FBE=30°
    ∵,点是的中点
    ∴BE=
    在Rt△BEF中,BF=
    根据勾股定理:EF=
    ∴EP=2EF=;
    ②当点P在AD上时,过点B作BF⊥AB于F,过点P作PG⊥BC,如下图所示
    ∵∠ABC=120°
    ∴∠A=10°
    ∴∠ABF=90°-∠A=30°
    在Rt△ABF中AF=,BF=
    ∴BP≥BF>BE,EP≥BF>BE
    ∴此时只能是以∠BPE为顶角的等腰三角形,BP=PE,
    ∴PG=BF=,EG=
    根据勾股定理:EP=;
    ③当点P在CD上时,过点E作EF⊥CD于F,过点B作BG⊥CD
    由②可知:BE的中垂线与CD无交点,
    ∴此时BP≠PE
    ∵∠A=10°,四边形ABCD为平行四边形
    ∴∠C=10°
    在Rt△BCG中,∠CBG=90°-∠C=30°,CG=
    根据勾股定理:BG=
    ∴BP≥BG>BE
    ∵EF⊥CD,BG⊥CD,点E为BC的中点
    ∴EF为△BCG的中位线
    ∴EF=
    ∴此时只能是以∠BEP为顶角的等腰三角形,BE=PE=1.
    综上所述:的长为或或1.
    故答案为:或或1
    此题考查的是等腰三角形的性质、直角三角形的性质和勾股定理,掌握三线合一、30°所对的直角边是斜边的一半、利用勾股定理解直角三角形和分类讨论的数学思想是解决此题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)证明见解析;(2)BG= 5+5.
    【解析】
    (1)由角平分线的性质和中垂线性质可得∠EDC=∠DCG=∠ACD=∠GDC,可得CE∥DG,DE∥GC,DE=EC,可证四边形DGCE是菱形;
    (2)过点D作DH⊥BC,由锐角三角函数可求DH的长,GH的长,BH的长,即可求BG的长.
    【详解】
    (1)∵CD平分∠ACB,
    ∴∠ACD=∠DCG
    ∵EG垂直平分CD,
    ∴DG=CC,DE=EC
    ∴∠DCG=∠GDC,∠ACD=∠EDC
    ∴∠EDC=∠DCG=∠ACD=∠GDC
    ∴CE∥DG,DE∥GC
    ∴四边形DECG是平行四边形
    又∵DE=EC
    ∴四边形DGCE是菱形
    (2)如图,过点D作DH⊥BC,
    ∵四边形DGCE是菱形,
    ∴DE=DG=GC=10,DG∥EC
    ∴∠ACB=∠DGB=30°,且DH⊥BC
    ∴DH=5,HG=DH=5
    ∵∠B=45°,DH⊥BC
    ∴∠B=∠BDH=45°
    ∴BH=DH=5
    ∴BG=BH+HG=5+5
    本题考查了菱形的判定和性质,线段垂直平分线的性质,熟练掌握菱形的判定是关键.
    15、(1)13;(2)见解析
    【解析】
    (1)由正方形的性质得出∠B=90°,BG=BC=5,则AB=AC+BC=12,由勾股定理即可得出结果;
    (2)设BC=a,由正方形的性质和点C是线段AB的三等分点得出AC=CE=2BC=2CF=2a,BC=BG=FG=CF=EF=a,∠B=∠ACE=∠EFG=∠EFG=90°,由勾股定理得出AE2=AC2+CE2=8a2,AG2=AB2+BG2=10a2,EG2=EF2+FG2=2a2,证得AG2=AE2+EG2,即可得出结论.
    【详解】
    (1)解:∵四边形BCFG是正方形,
    ∴∠B=90°,BG=BC=5,
    ∵AB=AC+BC=7+5=12,
    ∴AG===13,
    故答案为:13;
    (2)证明:设BC=a,
    ∵四边形ACED和四边形BCFG都是正方形,点C是线段AB的三等分点,
    ∴AC=CE=2BC=2CF=2a,BC=BG=FG=CF=EF=a,∠B=∠ACE=∠EFG=∠EFG=90°,
    ∴AE2=AC2+CE2=8a2,
    AB=3BC=3a,
    AG2=AB2+BG2=9a2+a2=10a2,
    EG2=EF2+FG2=a2+a2=2a2,
    ∴AE2+EG2=8a2+2a2=10a2,
    ∴AG2=AE2+EG2,
    ∴△AEG是直角三角形.
    此题考查正方形的性质,勾股定理,熟练掌握正方形的性质与勾股定理是解题的关键.
    16、不等式组的解集是﹣1<x≤3.
    【解析】
    分析:根据不等式组分别求出x的取值,然后画出数轴,在数轴上找出公共部分就是该不等式的解集.
    详解:
    由①得:x≤3,
    由②得:x>﹣1,
    ∴不等式组的解集是﹣1<x≤3,
    在数轴上表示不等式组的解集为:

    点睛:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,根据口诀:大小小大中间找确定不等式组的解集,由“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.
    17、 (1)AB=
    (2)图形见解析
    (3)6
    【解析】
    (1)根据格点图形的性质,结合勾股定理即可解题,
    (2)图形如下图,答案不唯一,
    (3)答案不唯一,根据菱形的对角线互相垂直平分是作出菱形的关键,菱形的面积可以根据对角线乘积的一半进行求解.
    【详解】
    (1)AB=
    (2)如下图,
    (3)如上图,AD=6,BC=2,
    ∴菱形ABCD的面积=
    本题考查了网格图的特征,菱形的性质和面积的求法,属于简单题,熟悉菱形对角线互相垂直平分的性质是解题关键
    18、(1)B(2m,);(2)四边形ABCD是菱形,理由见解析;(3)y= .
    【解析】
    (1)根据点P是AC的中点得到点A的横坐标是m,结合反比例函数图象上点的坐标特征来求点B的坐标;
    (2)根据点P的坐标得到点P是BD的中点,所以由“对角线互相垂直平分的四边形是菱形”得到四边形ABCD是菱形;
    (3)由△ABP的面积为3,知BP•AP=1.根据反比例函数 y=中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.
    【详解】
    (1)∵A的横坐标为m,AC⊥x轴于C,P是AC的中点,
    ∴点B的横坐标是2m.
    又∵点B在双曲线y= (x>0)上,
    ∴B(2m,).
    (2)连接AD、CD、BC;
    ∵AC⊥x轴于C,BD⊥y轴于点D,
    ∴AC⊥BD;
    ∵A(m, ),B(2m, ),
    ∴P(m, ),
    ∴PD=PB,
    又AP=PC,
    ∴四边形ABCD是菱形;
    (3)∵△ABP的面积为⋅BP⋅AP=3,
    ∴BP⋅AP=1,
    ∵P是AC的中点,
    ∴A点的纵坐标是B点纵坐标的2倍,
    又∵点A. B都在双曲线y= (x>0)上,
    ∴B点的横坐标是A点横坐标的2倍,
    ∴OC=DP=BP,
    ∴k=OC⋅AC=BP⋅2AP=12.
    ∴该双曲线的解析式是:y= .
    此题考查反比例函数综合题,解题关键在于作辅助线.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    先根据折叠的性质得∠EAB=∠EAN,AN=AB=8,再根据正方形的性质得AB∥CD,则∠EAB=∠F,所以∠EAN=∠F,得到MA=MF,设CM=x,则AM=MF=4+x,DM=DC-MC=8-x,在Rt△ADM中,根据勾股定理,解得x,然后利用MN=AM-AN求解即可.
    【详解】
    解:∵△ABE沿直线AE翻折,点B落在点N处,
    ∴AN=AB=8,∠BAE=∠NAE,
    ∵正方形对边AB∥CD,
    ∴∠BAE=∠F,
    ∴∠NAE=∠F,
    ∴AM=FM,
    设CM=x,∵AB=2CF=8,
    ∴CF=4,
    ∴DM=8﹣x,AM=FM=4+x,
    在Rt△ADM中,由勾股定理得,AM2=AD2+DM2,
    即(4+x)2=82+(8﹣x)2,
    解得x=,
    所以,AM=4+4=8,
    所以,NM=AM﹣AN=8﹣8=.
    故答案为:.
    本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,对应边和对应角相等,也考查了正方形的性质和勾股定理,熟练掌握正方形的性质及折叠的性质并能正确运用勾股定理是解题的关键.
    20、0,2
    【解析】
    求出不等式2x+2>3x﹣2的解集,再求其非负整数解.
    【详解】
    解:移项得,﹣2x﹣3x>﹣6﹣4,
    合并同类项得,﹣5x>﹣20,
    系数化为2得,x<2.
    故其非负整数解为:0,2.
    本题考查了一元一次不等式的整数解,解答此题不仅要明确不等式的解法,还要知道非负整数的定义.解答时尤其要注意,系数为负数时,要根据不等式的性质3,将不等号的方向改变.
    21、15.
    【解析】
    中位数有2种情况,共有2n+1个数据时,从小到大排列后,,中位数应为第n+1个数据,可见,大于中位数与小于中位数的数据都为n个;共有2n+2个数据时,从小到大排列后,中位数为中间两个数据平均值,大小介于这两个数据之间,可见大于中位数与小于中位数的数据都为n+1个,所以这组数据中大于或小于这个中位数的数据各占一半,中位数有一个.
    【详解】
    解:总数据有5个,中位数是从小到大排,第3个数据为中位数,即15为这组数据的中位数.
    故答案为:15
    本题考查中位数的定义,解题关键是熟练掌握中位数的计算方法,即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).
    22、3或6
    【解析】
    根据点P的位置分类讨论,分别画出对应的图形,根据平行四边形的对边相等列出方程即可求出结论.
    【详解】
    解:当P运动在线段AD上运动时, AP=3t,CQ=t,
    ∴DP=AD-AP=12-3t,
    ∵四边形PDCQ是平行四边形,
    ∴PD=CQ,
    ∴12-3t=t,
    ∴t=3秒;
    当P运动到AD线段以外时,AP=3t,CQ=t,
    ∴DP=3t-12,
    ∵四边形PDCQ是平行四边形,
    ∴PD=CQ,
    ∴3t-12=t,
    ∴t=6秒,
    故答案为:3或6
    此题考查的是平行四边形与动点问题,掌握平行四边形的对应边相等和分类讨论的数学思想是解决此题的关键.
    23、乙
    【解析】
    根据方差的定义,对S甲2和S乙2比大小,方差越小数据越稳定,即可得出答案.
    【详解】
    解:两班平均分和方差分别甲=82分,乙=82分,S甲2=245分,S乙2=90分
    ∴S甲2>S乙2
    ∴成绩较为整齐的是乙.故答案是乙.
    本题考查了方差的定义即方差越小数据越稳定,学生们掌握此定义即可.
    二、解答题(本大题共3个小题,共30分)
    24、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.
    【解析】
    分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;
    (2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;
    (3)根据题意和(2)中的结果,可以解答本题.
    详解:(1)设A型空调和B型空调每台各需x元、y元,
    ,解得,,
    答:A型空调和B型空调每台各需9000元、6000元;
    (2)设购买A型空调a台,则购买B型空调(30-a)台,

    解得,10≤a≤12,
    ∴a=10、11、12,共有三种采购方案,
    方案一:采购A型空调10台,B型空调20台,
    方案二:采购A型空调11台,B型空调19台,
    方案三:采购A型空调12台,B型空调18台;
    (3)设总费用为w元,
    w=9000a+6000(30-a)=3000a+180000,
    ∴当a=10时,w取得最小值,此时w=210000,
    即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.
    点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.
    25、
    【解析】
    (1)(2)根据平面向量的加法法则计算即可解决问题;
    (3)利用勾股定理计算即可;
    【详解】
    解:(1)= + =﹣;
    (2)=+ =;
    (3)∵AC⊥BD,||=4,||=6,
    ∴|+|=2 .
    故答案为﹣,,2
    此题考查平面向量的加法法则,勾股定理,解题关键在于掌握运算法则
    26、(1)40人一分钟内平均每人跳绳102;;(2)6(1)班能得到学校奖励.
    【解析】
    (1)根据加权平均数的计算公式进行计算即可;
    (2)根据评分标准计算总积分,然后与1比较大小.
    【详解】
    解:(1)6(1)班40人中跳绳的平均个数为100+=102个,
    答:40人一分钟内平均每人跳绳102;
    (2)依题意得:(4×6+5×10+6×5)×3-(-2×6-1×12)×(-1)=288>1.
    所以6(1)班能得到学校奖励.
    本题考查了加权平均数,正负数在实际生活中的应用.解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
    题号





    总分
    得分
    批阅人
    年龄/岁
    13
    14
    15
    16
    人数
    1
    1
    2
    1
    相关试卷

    随州市重点中学2024年九年级数学第一学期开学调研模拟试题【含答案】: 这是一份随州市重点中学2024年九年级数学第一学期开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    沈阳市重点中学2025届九年级数学第一学期开学调研模拟试题【含答案】: 这是一份沈阳市重点中学2025届九年级数学第一学期开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    秦皇岛市重点中学2024年数学九年级第一学期开学调研模拟试题【含答案】: 这是一份秦皇岛市重点中学2024年数学九年级第一学期开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map