终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年高考数学复习解答题提优思路(全国通用)专题05解三角形(角平分线问题问题)(典型题型归类训练)(学生版+解析)

    立即下载
    加入资料篮
    2024-2025学年高考数学复习解答题提优思路(全国通用)专题05解三角形(角平分线问题问题)(典型题型归类训练)(学生版+解析)第1页
    2024-2025学年高考数学复习解答题提优思路(全国通用)专题05解三角形(角平分线问题问题)(典型题型归类训练)(学生版+解析)第2页
    2024-2025学年高考数学复习解答题提优思路(全国通用)专题05解三角形(角平分线问题问题)(典型题型归类训练)(学生版+解析)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年高考数学复习解答题提优思路(全国通用)专题05解三角形(角平分线问题问题)(典型题型归类训练)(学生版+解析)

    展开

    这是一份2024-2025学年高考数学复习解答题提优思路(全国通用)专题05解三角形(角平分线问题问题)(典型题型归类训练)(学生版+解析),共25页。
    \l "_Tc32624" 二、典型题型 PAGEREF _Tc32624 \h 2
    \l "_Tc4425" 方法一:等面积法 PAGEREF _Tc4425 \h 2
    \l "_Tc498" 方法二:角互补 PAGEREF _Tc498 \h 4
    \l "_Tc20811" 三、专项训练 PAGEREF _Tc20811 \h 5
    一、必备秘籍
    角平分线
    如图,在中,平分,角,,所对的边分别为,,
    核心技巧1:内角平分线定理:

    核心技巧2:等面积法(使用频率最高)
    核心技巧3:边与面积的比值:
    核心技巧4:角互补:
    在中有:;
    在中有:
    二、典型题型
    方法一:等面积法
    1.(23-24高一下·山东·阶段练习)的内角的对边分别为,满足
    (1)求;
    (2)的角平分线与交于点,求的最小值.
    2.(23-24高一下·黑龙江哈尔滨·阶段练习)在中,内角的对边分别是,且,
    (1)求角;
    (2)若,求边上的角平分线长.
    3.(23-24高一下·广东东莞·阶段练习)如图在中,,,分别是角,,所对的边,是边上的一点.
    (1)若,,,,求的面积.
    (2)试利用“”证明:“”;
    (3)已知,是的角平分线,且,,求的面积.
    4.(2024·四川遂宁·二模)已知的内角A,B,C的对边分别为a,b,c,且.
    (1)求角C;
    (2)若CD是的角平分线,,的面积为,求c的值.
    5.(22-23高一下·江苏连云港·期中)已知的内角A,B,C的对边为a,b,c,且.
    (1)求;
    (2)若的面积为;
    ①已知E为BC的中点,求底边BC上中线AE长的最小值;
    ②求内角A的角平分线AD长的最大值.
    方法二:角互补
    1.(23-24高二上·云南玉溪·期中)已知的三个内角所对的边分别为,满足,且.
    (1)求;
    (2)若点在边上,,且满足 ,求边长;
    请在以下三个条件:
    ①为的一条中线;②为的一条角平分线;③为的一条高线;
    其中任选一个,补充在上面的横线中,并进行解答.
    注:如果选择多个条件分别解答,按第一个解答计分.
    2.(2023高三上·全国·专题练习)在中,记角、、所对的边分别为、、,已知,中线交于,角平分线交于,且,,求的面积.
    3.(23-24高三上·江苏南通·期末)已知的内角、、的对边分别为、、,,,点满足.
    (1)若为的角平分线,求的周长;
    (2)求的取值范围.
    三、专项训练
    1.(23-24高二上·辽宁·阶段练习)在中, ,,, 的角平分线交于,则 .
    2.(2024·浙江·模拟预测)在中,是的角平分线且,若,则 ,的面积为 .
    3.(23-24高三下·浙江·开学考试)在△中, 是的角平分线, 且交于. 已知, 则 , .
    7.(23-24高一下·湖南邵阳·期中)在中,内角,,的对边分别为,,,.
    (1)求角A的大小;
    (2)若是角平分线,求证:.
    8.(2024·广东深圳·模拟预测)已知的内角的对边分别为 ,且.
    (1)求角B;
    (2)设的角平分线交于点D,若,求的面积的最小值.
    9.(2024·广东惠州·模拟预测)条件①,
    条件②,
    条件③.
    请从上述三个条件中任选一个,补充在下列问题中,并解答.
    已知的内角、、所对的边分别为、、,且满足________,
    (1)求;
    (2)若是的角平分线,且,求的最小值.
    10.(23-24高三上·河北·阶段练习)已知中,角A,B,C所对的边分别为a,b,c,其中,.
    (1)若点D为的中点且,求的余弦值;
    (2)若的角平分线与相交于点E,当取得最大值时,求的长.
    专题05 解三角形(角平分线问题问题)(典型题型归类训练)
    目录
    TOC \ "1-2" \h \u \l "_Tc31175" 一、必备秘籍 PAGEREF _Tc31175 \h 1
    \l "_Tc32624" 二、典型题型 PAGEREF _Tc32624 \h 1
    \l "_Tc4425" 方法一:等面积法 PAGEREF _Tc4425 \h 1
    \l "_Tc498" 方法二:角互补 PAGEREF _Tc498 \h 7
    \l "_Tc20811" 三、专项训练 PAGEREF _Tc20811 \h 10
    一、必备秘籍
    角平分线
    如图,在中,平分,角,,所对的边分别为,,
    核心技巧1:内角平分线定理:

    核心技巧2:等面积法(使用频率最高)
    核心技巧3:边与面积的比值:
    核心技巧4:角互补:
    在中有:;
    在中有:
    二、典型题型
    方法一:等面积法
    1.(23-24高一下·山东·阶段练习)的内角的对边分别为,满足
    (1)求;
    (2)的角平分线与交于点,求的最小值.
    【答案】(1)
    (2)
    【分析】(1)由诱导公式正弦定理倍角公式化简已知等式,即可求解;
    (2)由,得,利用基本不等式求的最小值.
    【详解】(1)由得:,
    由正弦定理得:,倍角公式得,
    由,有,所以,
    得,所以.
    (2)由,得,
    即,得,

    当且仅当即 时等号成立
    所以的最小值为.
    2.(23-24高一下·黑龙江哈尔滨·阶段练习)在中,内角的对边分别是,且,
    (1)求角;
    (2)若,求边上的角平分线长.
    【答案】(1);
    (2).
    【分析】(1)根据给定条件,利用正弦定理边化角,再利用两角和的正弦公式化简即可求出.
    (2)利用余弦定理及已知求出,然后利用三角形面积公式列方程求解即可.
    【详解】(1)在中,由正弦定理及,得
    ,即,
    而,解得,又,
    所以.
    (2)由及余弦定理得,又,解得,
    由得,
    即,则,
    所以.
    3.(23-24高一下·广东东莞·阶段练习)如图在中,,,分别是角,,所对的边,是边上的一点.
    (1)若,,,,求的面积.
    (2)试利用“”证明:“”;
    (3)已知,是的角平分线,且,,求的面积.
    【答案】(1)
    (2)证明见解析
    (3)
    【分析】(1)根据,利用三角形面积公式求解即可;
    (2)由得,两边同时乘以,再利用向量的数量积即可证明;
    (3)根据正弦定理将角化边求出,利用和余弦定理求出的值即可求出的面积.
    【详解】(1),,

    的面积为;
    (2),,
    两边同时乘以得,
    即,

    两边同时除以,得,

    (3),
    根据正弦定理有,即,
    ,,,即,
    ,,即,
    是的角平分线,,


    即,
    整理得①,
    在中,,
    即②,
    ①②联立解得(舍)或,
    ,
    的面积为.
    4.(2024·四川遂宁·二模)已知的内角A,B,C的对边分别为a,b,c,且.
    (1)求角C;
    (2)若CD是的角平分线,,的面积为,求c的值.
    【答案】(1)
    (2)
    【分析】(1)利用正弦定理化角为边,结合和差角公式以及弦切互化可得,即可求解,
    (2)由,可得,根据等面积法可求,由余弦定理即可求的值.
    【详解】(1)由可得
    故,进而,
    由于所以
    (2)由面积公式得,解得,
    ,,
    即,,
    又,,

    5.(22-23高一下·江苏连云港·期中)已知的内角A,B,C的对边为a,b,c,且.
    (1)求;
    (2)若的面积为;
    ①已知E为BC的中点,求底边BC上中线AE长的最小值;
    ②求内角A的角平分线AD长的最大值.
    【答案】(1)
    (2)长的最小值为,的最大值
    【分析】(1)由正弦定理和余弦定理得到,进而求出;
    (2)由面积公式求出,进而根据向量的模长公式结合不等式即可求解的最值,根据三角形面积公式,结合等面积法,利用基本不等式可求解的最值.
    【详解】(1)由正弦定理,得,即,
    故,
    因为,所以,
    所以;
    (2)①由(1)知,
    因为的面积为,所以,解得,
    由于,所以

    当且仅当时,等号取得到,所以;
    ②因为为角的角平分线,所以,
    由于,
    所以,
    由于,所以,
    由于,
    又,所以
    由于,当且仅当时,等号取得到,
    故,故,
    方法二:角互补
    1.(23-24高二上·云南玉溪·期中)已知的三个内角所对的边分别为,满足,且.
    (1)求;
    (2)若点在边上,,且满足 ,求边长;
    请在以下三个条件:
    ①为的一条中线;②为的一条角平分线;③为的一条高线;
    其中任选一个,补充在上面的横线中,并进行解答.
    注:如果选择多个条件分别解答,按第一个解答计分.
    【答案】(1)
    (2)
    【分析】(1)利用正弦定理将边化角,借助三角恒等变换公式化简即可;
    (2)由(1)问,分析边角关系,利用余弦定理等知识求解即可.
    【详解】(1)因为,由正弦定理可得,
    由倍角公式可得,则,
    又因为,则,
    所以,
    即.
    且,则,可得,
    又因为,所以.
    (2)若选择①:若为的中线,设(),
    由余弦定理可得,,
    因为,可得,
    即,整理得,可知,
    又因为,解得或(舍去),
    所以;
    若选择②:若为的角平分线,则,
    在中,由余弦定理得,即,
    可知,即,可知,,
    所以;
    若选择③:若为的高线,则,
    则,即,则,
    可知,可知,,
    所以.
    2.(2023高三上·全国·专题练习)在中,记角、、所对的边分别为、、,已知,中线交于,角平分线交于,且,,求的面积.
    【答案】
    【分析】由三角恒等变换化简可得出,利用角平分线定理可得出,结合可得出,,然后在、中,应用余弦定理可得出,结合已知条件可得出的值,分析可知,再利用三角形的面积公式可求得的面积.
    【详解】解:因为,
    所以,,
    即,由正弦定理可得,
    因为的角平分线交于,则,所以,.
    又因为,,由可得,
    即,则,.
    在中,由余弦定理得,①
    在中,由余弦定理得.②
    因为,
    则①②可得,,即,
    即,即,解得,
    此时满足,故,所以,.
    3.(23-24高三上·江苏南通·期末)已知的内角、、的对边分别为、、,,,点满足.
    (1)若为的角平分线,求的周长;
    (2)求的取值范围.
    【答案】(1)
    (2)
    【分析】(1)由和,根据为的角平分线,得到,再与求解.
    (2)由和,得到,再结合,得到求解.
    【详解】(1)在中,,①
    在中,,②
    因为为的角平分线,
    所以,所以,
    因为,所以,
    所以,
    又因为,所以,
    又因为,
    所以,,
    所以的周长为.
    (2)在中,,
    在中,,
    因为,所以,
    所以,
    因为,所以,
    因为,所以
    所以所以,
    令,则,
    则,,

    当时, ,当 时, ,
    所以在上单调递减,在上单调递增
    所以,所以的取值范围为.
    三、专项训练
    1.(23-24高二上·辽宁·阶段练习)在中, ,,, 的角平分线交于,则 .
    【答案】
    【分析】由余弦定理求得,然后由角平分线定理求得,,再由余弦定理利用,求得.
    【详解】中,由余弦定理得,
    解得(舍去),
    是角平分线,则,
    所以,,
    又由余弦定理得:


    而,
    因此,

    ,.
    故答案为:.

    2.(2024·浙江·模拟预测)在中,是的角平分线且,若,则 ,的面积为 .
    【答案】 6
    【分析】根据给定条件,求出边AB,AC长的关系,再利用余弦定理、三角形面积定理求解作答.
    【详解】在中,是的角平分线,且,则有:
    ,令,则,
    在与中,由余弦定理得:,,
    因此,,得,即有,解得,
    的面积为.
    故答案为:;6
    3.(23-24高三下·浙江·开学考试)在△中, 是的角平分线, 且交于. 已知, 则 , .
    【答案】
    【分析】由角平分线的性质可得,设结合列方程求参数m,即可求,再由余弦定理求.
    【详解】由角平分线的性质知:,若,
    因为,则,
    所以,整理得,解得或(舍).
    所以,则.
    故答案为:
    4.(23-24高三上·江西赣州·)在中,内角的对边分别为,满足为的角平分线,且,则 .
    【答案】6
    【解析】根据题意先求出的三角函数值,在中,已知两边夹一角,可以利用余弦定理求出, 再求出的三角函数值,在中,已知和,先求出,再利用正弦定理求解即可.
    【详解】记,因为,所以,,
    在中,由余弦定理,,代入数据,解得,

    ,所以,,
    在中,,
    由正弦定理, ,即,解得,,即.
    故答案为:6
    【点睛】本题主要考查解三角形正弦定理和余弦定理的综合应用,考查学生对三角形中角和边关系的分析能力,同时还考查学生的计算能力,属于中档题.
    5.(2024·江苏常州·模拟预测)已知中内角的对边分别是,.
    (1)求的值;
    (2)设是的角平分线,求的长.
    【答案】(1)
    (2)
    【分析】(1)由三角形的正弦定理,结合诱导公式以及两角和的正弦公式可得所求值;
    (2)设ADx,运用三角形的面积公式,结合等积法可得,解方程可得所求值.
    【详解】(1),由,可得,
    ,可得B为锐角,则,
    所以sin=,
    由=可得,解得;
    (2)由(1)可得,
    因为是的平分线,
    所以,
    设,由,
    可得,
    化为,
    解得,
    则.
    6.(2024·安徽蚌埠·模拟预测)已知的内角,,所对的边分别为,且满足.
    (1)求角;
    (2)若的面积为,点在边上,是的角平分线,且,求的周长.
    【答案】(1)
    (2)
    【分析】(1)由题中等式和二倍角公式,正弦定理,余弦定理整理可得.
    (2)利用三角形面积公式,先求,再利用余弦定理求即可.
    【详解】(1),

    由正弦定理得,

    又,.
    (2)



    由题意知,




    ,故.
    的周长为.
    7.(23-24高一下·湖南邵阳·期中)在中,内角,,的对边分别为,,,.
    (1)求角A的大小;
    (2)若是角平分线,求证:.
    【答案】(1)
    (2)证明见解析
    【分析】(1)利用正弦定理边化角结合同角的三角函数关系即可求得答案;
    (2)根据角平分线性质可得,利用展开化简即可证明结论.
    【详解】(1)由,由正弦定理可得,
    因为,可得,所以,即,
    又因为,可得.
    (2)因为是角平分线,且,所以,
    所以,
    可得,
    可得,
    所以,所以,
    即.
    8.(2024·广东深圳·模拟预测)已知的内角的对边分别为 ,且.
    (1)求角B;
    (2)设的角平分线交于点D,若,求的面积的最小值.
    【答案】(1)
    (2)
    【分析】(1)利用正弦定理边化角,结合两角和的正弦公式化简求值,可得答案.
    (2)根据三角形的面积之间的关系,即,可得,结合基本不等式,即可求得答案.
    【详解】(1)由已知及正弦定理得:,
    又在中,,
    (2)由已知结合三角形的面积公式可得出,将与相乘,展开后利用基本不等式可求得的最小值.
    【详解】(1)解:选①:因为,由正弦定理可得,
    即,
    所以,
    而,,故,因为,所以;
    选②:因为,由正弦定理,
    即,由余弦定理,
    因为,所以;
    选③:因为,
    正弦定理及三角形内角和定理可得,
    即,
    因为、,则,所以,,,
    所以,所以,即.
    (2)解:由题意可知,,
    由角平分线性质和三角形面积公式得,
    化简得,即,
    因此,
    当且仅当时取等号,所以的最小值为.
    10.(23-24高三上·河北·阶段练习)已知中,角A,B,C所对的边分别为a,b,c,其中,.
    (1)若点D为的中点且,求的余弦值;
    (2)若的角平分线与相交于点E,当取得最大值时,求的长.
    【答案】(1)
    (2)
    【分析】(1)延长到F,构造平行四边形,转化角后由余弦定理计算;
    (2)设,,由余弦定理用表示出,由面积把用表示,然后计算出,利用基本不等式得最大值.
    【详解】(1)根据题意,延长到F,使得,连接,
    可得四边形为平行四边形,
    所以;
    (2)设,,
    可得,
    因此,

    当且仅当时等号成立,
    所以.

    相关试卷

    2024-2025学年高考数学复习解答题提优思路(全国通用)专题04解三角形(中线问题)(典型题型归类训练)(学生版+解析):

    这是一份2024-2025学年高考数学复习解答题提优思路(全国通用)专题04解三角形(中线问题)(典型题型归类训练)(学生版+解析),共22页。

    2024-2025学年高考数学复习解答题提优思路(全国通用)专题04点到平面的距离(典型题型归类训练)(学生版+解析):

    这是一份2024-2025学年高考数学复习解答题提优思路(全国通用)专题04点到平面的距离(典型题型归类训练)(学生版+解析),共39页。

    2024-2025学年高考数学复习解答题提优思路(全国通用)专题04构造函数法解决不等式问题(典型题型归类训练)(学生版+解析):

    这是一份2024-2025学年高考数学复习解答题提优思路(全国通用)专题04构造函数法解决不等式问题(典型题型归类训练)(学生版+解析),共28页。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map