|试卷下载
终身会员
搜索
    上传资料 赚现金
    四川省成都市锦江区2024年数学九年级第一学期开学统考试题【含答案】
    立即下载
    加入资料篮
    四川省成都市锦江区2024年数学九年级第一学期开学统考试题【含答案】01
    四川省成都市锦江区2024年数学九年级第一学期开学统考试题【含答案】02
    四川省成都市锦江区2024年数学九年级第一学期开学统考试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省成都市锦江区2024年数学九年级第一学期开学统考试题【含答案】

    展开
    这是一份四川省成都市锦江区2024年数学九年级第一学期开学统考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)一个圆锥形的圣诞帽高为 10cm,母线长为 15cm,则圣诞帽的表面积为( )
    A.75 cm2B.150 cm2C.150 cm2D.75 cm2
    2、(4分)如图,将△ABC 绕点 A 按顺时针方向旋转 120°得到△ADE,点 B 的对应点是点 E,点 C 的对应点是点 D,若∠BAC=35°,则∠CAE 的度数为( )
    A.90°B.75°C.65°D.85°
    3、(4分)当1<a<2时,代数式+|1-a|的值是( )
    A.-1B.1C.2a-3D.3-2a
    4、(4分)如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省( )元.
    A.4B.5C.6D.7
    5、(4分)如图,中,于点,点为的中点,连接,则的周长是( )
    A.4+2B.7+C.12D.10
    6、(4分)顺次连接矩形四边中点得到的四边形一定是( )
    A.正方形B.矩形C.菱形D.不确定,与矩形的边长有关
    7、(4分)与去年同期相比,我国石油进口量增长了,而单价增长了,总费用增长了,则( )
    A.5B.10C.15D.20
    8、(4分)如图,中,,,将绕点逆时针旋转得到,若点的对应点落在边上,则旋转角为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)设函数与的图象的交点坐标为,则的值为__________.
    10、(4分)若二次根式在实数范围内有意义,则实数x的取值范围是_____.
    11、(4分)一次函数y=2x+6的图象如图所示,则不等式2x+6>0的解集是________,当y≤3时,x的取值范围是________.
    12、(4分)已知为实数,若有正数b,m,满足,则称是b,m的弦数.若且为正数,请写出一组,b, m使得是b,m的弦数:_____________.
    13、(4分)如图,在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.
    (1)求证:△AFE≌△CDF;
    (2)若AB=4,BC=8,求图中阴影部分的面积.
    15、(8分)如图,甲、乙两船同时从A港口出发,甲船以每小时30海里的速度向西偏北32°的方向航行2小时到达C岛,乙船以每小时40海里的速度航行2小时到B岛,已知B、C两岛相距100海里,求乙船航行的方向.
    16、(8分)直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单位的速度沿线段BO向O点移动(与B、O点不重合),过E作EF//AB,交x轴于F.将四边形ABEF沿EF折叠,得到四边形DCEF,设点E的运动时间为t秒.
    (1)①直线y=x-6与坐标轴交点坐标是A(_____,______),B(______,_____);
    ②画出t=2时,四边形ABEF沿EF折叠后的图形(不写画法);
    (2)若CD交y轴于H点,求证:四边形DHEF为平行四边形;并求t为何值时,四边形DHEF为菱形(计算结果不需化简);
    (3)连接AD,BC四边形ABCD是什么图形,并求t为何值时,四边形ABCD的面积为36?
    17、(10分)如图,在矩形中,于点, ,求的度数.
    18、(10分)某校为奖励学习之星,准备在某商店购买A、B两种文具作为奖品,已知一件A种文具的价格比一件B种文具的价格便宜5元,且用600元买A种文具的件数是用400元买B种文具的件数的2倍.
    (1)求一件A种文具的价格;
    (2)根据需要,该校准备在该商店购买A、B两种文具共150件.
    ①求购买A、B两种文具所需经费W与购买A种文具的件数a之间的函数关系式;
    ②若购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,求有几种购买方案,并找出经费最少的方案,及最少需要多少元?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知一次函数y=(m﹣1)x﹣m+2的图象与y轴相交于y轴的正半轴上,则m的取值范围是_____.
    20、(4分)在矩形中,,点是的中点,将沿折叠后得到,点的对应点为点.(1)若点恰好落在边上,则______,(2)延长交直线于点,已知,则______.
    21、(4分)化简:______.
    22、(4分)如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为__________.
    23、(4分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)化简并求值:,其中.
    25、(10分)(1)若解关于 x的分式方程会产生增根,求 m的值.
    (2)若方程的解是正数,求 a的取值范围.
    26、(12分)往一个长25m,宽11m的长方体游泳池注水,水位每小时上升0.32m,
    (1)写出游泳池水深d(m)与注水时间x(h)的函数表达式;
    (2)如果x(h)共注水y(m3),求y与x的函数表达式;
    (3)如果水深1.6m时即可开放使用,那么需往游泳池注水几小时?注水多少(单位:m3)?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    利用圆锥的高,母线长,底面半径组成直角三角形可求得圆锥底面半径,圆锥的侧面积=底面周长×母线长÷1.
    【详解】
    解:高为10cm,母线长为15cm,由勾股定理得,
    底面半径= =5 cm,底面周长=10πcm,
    侧面面积= ×10π×15=75πcm1.
    故选:A.
    本题考查圆锥的计算,利用勾股定理,圆的周长公式和圆锥侧面积公式求解.
    2、D
    【解析】
    由题意可得∠BAE是旋转角为120°且∠BAC=35°,可求∠CAE的度数.
    【详解】
    ∵将△ABC绕点A按顺时针方向旋转120°得到△ADE
    ∴∠BAE=120°且∠BAC=35°
    ∴∠CAE=85°
    故选D.
    本题考查了旋转的性质,关键是熟练运用旋转的性质解决问题.
    3、B
    【解析】
    解:∵1<a<2,
    ∴=|a-2|=-(a-2),
    |1-a|=a-1,
    ∴+|1-a|=-(a-2)+(a-1)=2-1=1.
    故选B.
    4、C
    【解析】
    观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式,再分别求出当x=1和x=5时,y值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数.
    【详解】
    解:设y关于x的函数关系式为y=kx+b,
    当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b中,
    ,解得:,
    ∴y=10x(0≤x≤2);
    当x>2时,将(2,20),(4,36)代入y=kx+b中,
    ,解得:,
    ∴y=8x+4(x≥2).
    当x=1时,y=10x=10,
    当x=5时,y=44,
    10×5-44=6(元),
    故选C.
    本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.
    5、D
    【解析】
    根据等腰三角形三线合一的性质,先求出BE,再利用直角三角形斜边中线定理求出DE即可.
    【详解】
    ∵在△ABC中,AB=AC=6,AE平分∠BAC,
    ∴BE=CE=BC=4,
    又∵D是AB中点,
    ∴BD=AB=3,
    ∴DE是△ABC的中位线,
    ∴DE=AC=3,
    ∴△BDE的周长为BD+DE+BE=3+3+4=1.
    故选:D.
    本题主要考查了直角三角形斜边中线定理及等腰三角形的性质:是三线合一,是中学阶段的常规题.
    6、C
    【解析】
    根据三角形的中位线平行于第三边,且等于第三边的一半求解.需注意新四边形的形状只与对角线有关,不用考虑原四边形的形状.
    【详解】
    如图,连接AC、BD.
    在△ABD中,
    ∵AH=HD,AE=EB,
    ∴EH=BD,
    同理FG=BD,HG=AC,EF=AC,
    又∵在矩形ABCD中,AC=BD,
    ∴EH=HG=GF=FE,
    ∴四边形EFGH为菱形.
    故选:C.
    本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.
    7、B
    【解析】
    设去年的石油进口量是x、单价是y,则今年我国石油进口量是(1+a%)x,单价是(1+)y.根据“总费用增长了15.5%”列出方程并解答.
    【详解】
    解:设去年的石油进口量是x、单价是y,则今年我国石油进口量是(1+a%)x,单价是(1+)y,
    由题意得:(1+a%)x•(1+)y=xy(1+15.5%)
    解得a=10(舍去负值)
    故选:B.
    本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
    8、C
    【解析】
    先根据等腰三角形的性质求得∠ABC=∠C=70°,继而根据旋转的性质即可求得答案.
    【详解】
    ∵AB=AC,∠A=40°,
    ∴∠ABC=∠C=(180°-∠A)=×140°=70°,
    ∵△EBD是由△ABC旋转得到,
    ∴旋转角为∠ABC=70°,
    故选C.
    本题考查了等腰三角形的性质,旋转的性质,熟练掌握相关知识是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、−.
    【解析】
    把交点坐标代入2个函数后,得到2个方程,求得a,b的解,整理求得的值即可.
    【详解】
    ∵函数与y=x−1的图象的交点坐标为(a,b),
    ∴b= ,b=a−1,
    ∴=a−1,
    a−a−2=0,
    (a−2)(a+1)=0,
    解得a=2或a=−1,
    ∴b=1或b=−2,
    ∴的值为−.
    故答案为:−.
    此题考查反比例函数与一次函数的交点问题,解题关键在于把交点坐标代入2个函数后,得到2个方程
    10、x<1
    【解析】
    直接利用二次根式有意义的条件分析得出答案.
    【详解】
    解:∵二次根式在实数范围内有意义,
    ∴1﹣x>0,
    解得:x<1.
    故答案为:x<1.
    此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
    11、x>﹣3 x≤﹣
    【解析】
    当x>−3时,2x+6>0;
    解不等式2x+6⩽3得x⩽﹣,即当x⩽﹣时,y⩽3.
    故答案为x>−3;x⩽﹣.
    12、(答案不唯一)
    【解析】
    根据题中提供的弦数的定义判断即可.
    【详解】
    解:,
    是4,3的弦数,
    故答案为:(答案不唯一)
    本题考查了平方差公式,正确理解题中的新定义是解本题的关键.
    13、1
    【解析】
    根据直角三角形的性质(斜边上的中线等于斜边的一半),求出DM=AB=3,即可得到ME=1,根据题意求出DE=DM+ME=4,根据三角形中位线定理可得BC=2DE=1.
    【详解】
    解:∵AM⊥BM,点D是AB的中点,
    ∴DM=AB=3,
    ∵ME=DM,
    ∴ME=1,
    ∴DE=DM+ME=4,
    ∵D是AB的中点,DE∥BC,
    ∴BC=2DE=1,
    故答案为:1.
    点睛:本题考查的是三角形的中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析;(2)1.
    【解析】
    试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;
    (2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.
    试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;
    (2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=×4×8﹣×4×3=1.
    点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.
    15、乙船航行的方向是东偏北58°方向.
    【解析】
    首先计算出甲乙两船的路程,再根据勾股定理逆定理可证明∠BAC=90°,然后再根据C岛在A西偏北32°方向,可得B岛在A东偏北58°方向.
    【详解】
    解:由题意得:甲2小时的路程=30×2=60海里,乙2小时的路程=40×2=80海里,且BC=100海里,
    ∵AC2+AB2=602+802=10000,
    BC2=1002=10000,
    ∴AC2+AB2=BC2,
    ∴∠BAC=90°,
    ∵C岛在A西偏北32°方向,
    ∴B岛在A东偏北58°方向.
    ∴乙船航行的方向是东偏北58°方向.
    此题主要考查了勾股定理逆定理,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
    16、(1)①6,0,0,-6;②见详解;(2)证明见详解,当时,四边形DHEF为菱形;(3)四边形ABCD是矩形,当时,四边形ABCD的面积为1.
    【解析】
    (1)①令求出x的值即可得到A的坐标,令求出y的值即可得到B的坐标;
    ②先求出t=2时E,F的坐标,然后找到A,B关于EF的对称点,即可得到折叠后的图形;
    (2)先利用对称的性质得出,然后利用平行线的性质和角度之间的关系得出,由此可证明四边形DHEF为平行四边形,要使四边形DHEF为菱形,只要,利用,然后表示出EF,建立一个关于t的方程进而求解即可;
    (3)AB和CD关于EF对称,根据对称的性质可知四边形ABCD为平行四边形,由(2)知,即可判断四边形ABCD的形状,由,可知,建立关于四边形ABCD面积的方程解出t的值即可.
    【详解】
    (1)①令,则 ,解得 ,
    ∴ ;
    令, 则,
    ∴;
    ②当t=2时, ,图形如下:
    (2)如图,
    ∵四边形DCEF与四边形ABEF关于直线EF对称,,







    即轴,

    ∴四边形DHEF为平行四边形.
    要使四边形DHEF为菱形,只需,



    又,


    解得 ,
    ∴当时,四边形DHEF为菱形;
    (3)连接AD,BC,
    ∵AB和CD关于EF对称,
    ∴ ,
    ∴四边形ABCD为平行四边形.
    由(2)知,



    ∴四边形ABCD为矩形.
    ∵ ,



    ∴四边形ABCD的面积为 ,
    解得,
    ∴当时,四边形ABCD的面积为1.
    本题主要考查一次函数与四边形综合,掌握平行四边形的判定及性质,矩形的判定,勾股定理,菱形的性质并利用方程的思想是解题的关键.
    17、
    【解析】
    根据矩形的性质以及垂直的定义求出OA=OB,∠OAB=60°,∠EAB=30°,再求出∠OBA=∠OAB=60°,进而可得出答案.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴∠DAB=90°,
    ∴∠DAE+∠BAE=90°
    ∵∠DAE=2∠BAE,
    ∴∠BAE=30°,∠DAE=60°,
    ∴AE⊥BD,
    ∴∠AEB=90°,
    ∴∠OBA=60°,
    ∵四边形ABCD是矩形,
    ∴OA=OC,OB=OD,AC=BD,
    ∴OA=OB,
    ∴∠OAB=∠OBA=60°,
    ∴∠EAC=60°-30°=30°,
    故答案为:30°
    本题考查了矩形的性质,等腰三角形的性质,三角形内角和定理的应用,解此题的关键是求出∠OAB和∠EAB的度数.
    18、(1)一件A种文具的价格为15元;(2)①W=-5a+3000;②有51种购买方案,经费最少的方案购买A种玩具100件,B种玩具50件,最低费用为2500元.
    【解析】
    (1)根据题意可以得到相应的分式方程,从而可以求得一件A种文具的价格;
    (2)①根据题意,可以直接写出W与a之间的函数关系式;
    ②根据题意可以求得a的取值范围,再根据W与a的函数关系式,可以得到W的最小值,本题得以解决.
    【详解】
    (1)设一件A种文具的价格为x元,则一件B种玩具的价格为(x+5)元,

    解得,x=15,
    经检验,x=15是原分式方程的解,
    答:一件A种文具的价格为15元;
    (2)①由题意可得,
    W=15a+(15+5)(150-a)=-5a+3000,
    即购买A、B两种文具所需经费W与购买A种文具的件数a之间的函数关系式是W=-5a+3000;
    ②∵购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,
    ∴,
    解得,50≤a≤100,
    ∵a为整数,
    ∴共有51种购买方案,
    ∵W=-5a+3000,
    ∴当a=100时,W取得最小值,此时W=2500,150-a=100,
    答:有51种购买方案,经费最少的方案购买A种玩具100件,B种玩具50件,最低费用为2500元.
    本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质、不等式的性质和分式方程的知识解答,注意分式方程要检验.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、m<2且m≠1
    【解析】
    根据一次函数图象与系数的关系得到m-1≠0,-m+2>0,然后求出两个不等式的公共部分即可.
    【详解】
    解:根据题意得m-1≠0,-m+2>0,
    解得m<2且m≠1.
    故答案为m<2且m≠1.
    本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).
    20、6 或
    【解析】
    (1)由矩形的性质得出,,由折叠的性质得出,由平行线的性质得出,推出,得出,即可得出结果;
    (2)①当点在矩形内时,连接,由折叠的性质得出,,,由矩形的性质和是的中点,得出,,,由证得,得出,由,得出,,,由勾股定理即可求出;
    ②当点在矩形外时,连接,由折叠的性质得出,,,由矩形的性质和是的中点,得出,,,由证得,得出,由,得出,由勾股定理得出:,即,即可求出.
    【详解】
    解:(1)四边形是矩形,
    ,,
    由折叠的性质可知,,如图1所示:




    是的中点,


    (2)①当点在矩形内时,连接,如图2所示:
    由折叠的性质可知,,,,
    四边形是矩形,是的中点,
    ,,,
    在和中,,



    ,,,

    ②当点在矩形外时,连接,如图3所示:
    由折叠的性质可知,,,,
    四边形是矩形,是的中点,
    ,,,
    在和中,,





    即:,

    解得:,(不合题意舍去),
    综上所述,或,
    故答案为(1)6;(2)或.
    本题考查了折叠的性质、矩形的性质、平行线的性质、勾股定理、全等三角形的判定与性质等知识,熟练掌握折叠的性质、证明三角形全等并运用勾股定理得出方程是解题的关键.
    21、
    【解析】
    根据二次根式的性质化简即可.
    【详解】

    故答案为.
    本题考查了二次根式的化简.注意最简二次根式的条件是:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式.
    22、
    【解析】
    根据勾股定理,可得AC的长,根据圆的性质,可得答案.
    【详解】
    由题意得
    故可得,
    又∵点B的坐标为2
    ∴M点的坐标是,
    故答案为:.
    此题考查勾股定理,解题关键在于结合实数与数轴解决问题.
    23、1.
    【解析】
    根据a+b=3,ab=2,应用提取公因式法,以及完全平方公式,求出代数式a3b+2a2b2+ab3的值是多少即可.
    【详解】
    ∵a+b=3,ab=2,
    ∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=2×32=1
    故答案为:1.
    本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
    二、解答题(本大题共3个小题,共30分)
    24、,
    【解析】
    首先进行化简,在代入计算即可.
    【详解】
    原式
    当时,原式
    本题主要考查根式的化简,注意根式的分母不等为0,这是必考题,必须掌握.
    25、(1)m=-1或2;(2)a<2且a≠-1
    【解析】
    (1)根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出m的值.
    (2)先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求a的取值范围.
    【详解】
    解:(1)方程两边都乘(x+2)(x-2),得
    2(x+2)+mx=3(x-2)
    ∵最简公分母为(x+2)(x-2),
    ∴原方程增根为x=±2,
    ∴把x=2代入整式方程,得m=-1.
    把x=-2代入整式方程,得m=2.
    综上,可知m=-1或2.
    (2)解:去分母,得2x+a=2-x
    解得:x=,
    ∵解为正数,
    ∴>0,
    ∴2-a>0,
    ∴a<2,且x≠2,
    ∴a≠-1
    ∴a<2且a≠-1.
    本题考查了分式方程的增根、分式方程的解、一元一次不等式,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
    26、 (1)d=0.32x;(2)y=0.88x;(3)需往游泳池注水5小时;注水440m3
    【解析】
    试题分析:
    (1)根据题意知:利用水位每小时上升0.32m,得出水深d(m)与注水时间x(h)之间的函数关系式;
    (2)首先求出游泳池每小时进水的体积,再求y与x的函数表达式即可;
    (3)利用(1)中所求,结合水深不低于1.6m得出不等式求出即可.
    【解答】解:(1)d=0.32x;
    (2)
    ∴y=88x
    (3)设向游泳池注水x小时,由题意得:
    0.32x≥1.6,
    解得:x≥5,
    ∴y=88x=88x=440m3.
    答:向游泳池至少注水4小时后才可以使用.注水440m3
    【点评】此题主要考查了一次函数的应用以及不等式的应用,根据题意得出游泳池水深d(m与注水时间x(h)之间的函数关系式是解题关键.
    题号





    总分
    得分
    批阅人
    相关试卷

    2025届四川省成都市锦江区七中学育才学校九上数学开学联考模拟试题【含答案】: 这是一份2025届四川省成都市锦江区七中学育才学校九上数学开学联考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    [数学]四川省成都市锦江区嘉祥外国语学校2024~2025学年九年级上学期开学试考试试题(有答案): 这是一份[数学]四川省成都市锦江区嘉祥外国语学校2024~2025学年九年级上学期开学试考试试题(有答案),共13页。

    四川省 成都市锦江区2024年九年级中考数学二模试题: 这是一份四川省 成都市锦江区2024年九年级中考数学二模试题,共8页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map