|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年四川省成都市高新南区九年级数学第一学期开学调研试题【含答案】
    立即下载
    加入资料篮
    2024年四川省成都市高新南区九年级数学第一学期开学调研试题【含答案】01
    2024年四川省成都市高新南区九年级数学第一学期开学调研试题【含答案】02
    2024年四川省成都市高新南区九年级数学第一学期开学调研试题【含答案】03
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年四川省成都市高新南区九年级数学第一学期开学调研试题【含答案】

    展开
    这是一份2024年四川省成都市高新南区九年级数学第一学期开学调研试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,四边形ABCD的对角线AC,BD相交于点O,且AB∥CD,添加下列条件后仍不能判断四边形ABCD是平行四边形的是( )
    A.AB=CDB.AD∥BCC.OA=OCD.AD=BC
    2、(4分)下列平面图形中,是中心对称图形的是( )
    A.B.C.D.
    3、(4分)已知:,计算:的结果是()
    A.B.C.D.
    4、(4分)如图,过正方形的顶点作直线,点、到直线的距离分别为和,则的长为( )
    A.B.C.D.
    5、(4分)下列变形错误的是( )
    A.B.
    C.D.
    6、(4分)已知a<b,则下列不等式不成立的是( )
    A.a+2<b+2B.2a<2bC.D.﹣2a>﹣2b
    7、(4分)若一个正多边形的每一个外角都等于40°,则它是( ).
    A.正九边形B.正十边形C.正十一边形D.正十二边形
    8、(4分)关于函数y= -x-3的图象,有如下说法:
    ①图象过点(0,-3);②图象与x轴的交点是(-3,0);③由图象可知y随x的增大而增大; ④图象不经过第一象限;⑤图象是与y= -x+4平行的直线.其中正确的说法有( )
    A.5个B.4个C.3个D.2个
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在中,,,,过点作且点在点的右侧.点从点出发沿射线方向以/秒的速度运动,同时点从点出发沿射线方向以/秒的速度运动,在线段上取点,使得,设点的运动时间为秒.当__________秒时,以,,,为顶点的四边形是平行四边形.
    10、(4分)如图,点E、F分别在矩形ABCD的边BC和CD上,如果△ABE、△ECF、△FDA的面积分别刚好为6、2、5,那么矩形ABCD的面积为_____.
    11、(4分)如图,已知是等边三角形,点在边上,以为边向左作等边,连结,作交于点,若,,则________.
    12、(4分)如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m.
    13、(4分)如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,若AC=8,BC=6,则CD=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,将正方形ABCD折叠,使点C与点D重合于正方形内点P处,折痕分别为AF、BE,如果正方形ABCD的边长是2,那么△EPF的面积是_____.
    15、(8分)某商城经销一款新产品,该产品的进价6元/件,售价为9元/件.工作人员对30天销售情况进行跟踪记录并绘制成图象,图中的折线OAB表示日销售量(件)与销售时间(天)之间的函数关系.
    (1)第18天的日销售量是 件
    (2)求与之间的函数关系式,并写出的取值范围
    (3)日销售利润不低于900元的天数共有多少天?
    16、(8分)如图,矩形OBCD中,OB=5,OD=3,以O为原点建立平面直角坐标系,点B,点D分别在x轴,y轴上,点C在第一象限内,若平面内有一动点P,且满足S△POB=S矩形OBCD,问:
    (1)当点P在矩形的对角线OC上,求点P的坐标;
    (2)当点P到O,B两点的距离之和PO+PB取最小值时,求点P的坐标.
    17、(10分)如图,四边形ABCD为矩形,C点在轴上,A点在轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4).
    (1)求G点坐标
    (2)求直线EF解析式
    (3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由
    18、(10分)先化简,再求值:÷(a-1+),其中a=.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在边长为2的正方形ABCD中,点E是边AD中点,点F在边CD上,且FE⊥BE,设BD与EF交于点G,则△DEG的面积是___
    20、(4分)用科学记数法表示:__________________.
    21、(4分)如图所示,已知ABCD中,下列条件:①AC=BD;②AB=AD;③∠1=∠2;④AB⊥BC中,能说明ABCD是矩形的有______________(填写序号)
    22、(4分)甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是___________ . (填“>”,“<”或“=”)
    23、(4分)已知一次函数y=ax+b的图象经过点(﹣2,0)和点(0,﹣1),则不等式ax+b>0的解集是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某学校开展课外体育活动,决定开设A:篮球、B:羽毛球、C:跑步、D:乒乓球这四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.
    (1)样本中最喜欢A项目的人数所占的百分比为 ,其所在扇形统计图中对应的圆心角度数是 度;
    (2)请把条形统计图补充完整;
    (3)若该校有学生2500人,请根据样本估计全校最喜欢跑步的学生人数约是多少?
    25、(10分)一次函数的图象经过点A(2,4)和B(﹣1,﹣5)两点.
    (1)求出该一次函数的表达式;
    (2)画出该一次函数的图象;
    (3)判断(﹣5,﹣4)是否在这个函数的图象上?
    (4)求出该函数图象与坐标轴围成的三角形面积.
    26、(12分)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.
    ①当0≤x≤3时,求y与x之间的函数关系.
    ②3<x≤12时,求y与x之间的函数关系.
    ③当容器内的水量大于5升时,求时间x的取值范围.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据平行四边形的判定定理逐个判断即可;
    1、两组 对边分别平行的四边形是平行四边形;
    2、两组对边分别相等的四边形是平行四边形;
    3、对角线互相平分的四边形是平行四边形;
    4、一组对边平行且相等的四边形是平行四边形;5、两组对角分别相等 的四边形是平行四边形.
    【详解】
    A、由“一组对边平行且相等的四边形是平行四边形”可得出四边形ABCD是平行四边形;
    B、由“两组对边分别平行的四边形是平行四边形”可得出四边形ABCD是平行四边形;
    C、由AB∥CD可得出∠BAO=∠DCO、∠ABO=∠CDO,结合OA=OC可证出△ABO≌△CDO(AAS),根据全等三角形的性质可得出AB=CD,由“一组对边平行且相等的四边形是平行四边形”可得出四边形ABCD是平行四边形;
    D、由AB∥CD、AD=BC无法证出四边形ABCD是平行四边形.
    故选D.
    【点评】
    本题考查了平行四边形的判定以及全等三角形的判定与性质,逐一分析四个选项给定条件能否证明四边形ABCD是平行四边形是解题的关键.
    2、B
    【解析】
    根据中心对称图形的概念求解.
    【详解】
    解:A、不是中心对称图形,故此选项错误;
    B、是中心对称图形,故此选项正确;
    C、不是中心对称图形,故此选项错误;
    D、不是中心对称图形,故此选项错误.
    故选B.
    本题考查中心对称图形.
    3、C
    【解析】
    原式利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.
    【详解】
    ∵,,


    故选:C.
    本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.
    4、A
    【解析】
    先证明△ABE≌△BCF,得到BE=CF=1,在Rt△ABE中利用勾股定理可得AB=2,由此可得AC长.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB=AC,∠ABC=90°.
    ∵∠ABE+∠EAB=90°,∠ABE+∠CBF=90°,
    ∴∠EAB=∠CBF.
    又∠AEB=∠CFB=90°,
    ∴△ABE≌BCF(AAS).
    ∴BE=CF=1.
    在Rt△ABE中,利用勾股定理可得AB===2.
    则AC=AB=2.
    故选A.
    本题主要考查了正方形的性质、全等三角形的判定和性质,以及勾股定理,解题的关键是通过全等转化线段使其划归于一直角三角形中,再利用勾股定理进行求解.
    5、D
    【解析】
    试题解析:A选项分子和分母同时除以最大公因式;B选项的分子和分母互为相反数;C选项分子和分母同时除以最大公因式,D选项正确的变形是所以答案是D选项
    故选D.
    6、C
    【解析】
    根据不等式的基本性质对各选项进行逐一分析即可.
    【详解】
    A、将a<b两边都加上2可得a+2<b+2,此不等式成立;
    B、将a<b两边都乘以2可得2a<2b,此不等式成立;
    C、将a<b两边都除以2可得,此选项不等式不成立;
    D、将a<b两边都乘以-2可得-2a>-2b,此不等式成立;
    故选C.
    本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.
    7、A
    【解析】
    根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.
    【详解】
    解:∵360÷40=1,
    ∴这个正多边形的边数是1.
    故选:A.
    本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.
    8、B
    【解析】
    根据一次函数的性质和图象上点的坐标特征解答.
    【详解】
    解:①将(0,-3)代入解析式得,左边=-3,右边=-3,故图象过(0,-3)点,正确;
    ②当y=0时,y=-x-3中,x=-3,故图象过(-3,0),正确;
    ③因为k=-1<0,所以y随x增大而减小,错误;
    ④因为k=-1<0,b=-3<0,所以图象过二、三、四象限,正确;
    ⑤因为y=-x-3与y= -x+4的k值(斜率)相同,故两图象平行,正确.
    故选:B.
    本题考查一次函数的性质和图象上点的坐标特征,要注意:在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、或14
    【解析】
    根据点P所在的位置分类讨论,分别画出图形,利用平行四边形的对边相等列出方程,从而求出结论.
    【详解】
    解:①当点P在线段BE上时,
    ∵AF∥BE
    ∴当AD=BC时,此时四边形ABCD为平行四边形
    由题意可知:AD=x,PE=2x
    ∵PC=2cm,
    ∴CE=PE-PC=(2x-2)cm
    ∴BC=BE-CE=(14-2x)cm
    ∴x=14-2x
    解得:x=;
    ②当点P在EB的延长线上时,
    ∵AF∥BE
    ∴当AD=CB时,此时四边形ACBD为平行四边形
    由题意可知:AD=x,PE=2x
    ∵PC=2cm,
    ∴CE=PE-PC=(2x-2)cm
    ∴BC= CE-BE =(2x-14)cm
    ∴x=2x-14
    解得:x=14;
    综上所述:当秒或14秒时,以,,,为顶点的四边形是平行四边形.
    故答案为:秒或14秒.
    此题考查的是平行四边形的性质和动点问题,掌握平行四边形的对边相等和行程问题中的公式是解决此题的关键.
    10、20
    【解析】
    设AB=CD=a,AD=BC=b,根据三角形的面积依次求出BE,EC,CF,DF的长度,再根据△ADF面积为5,可列方程,可求ab的值,即可得矩形ABCD的面积.
    【详解】
    设AB=CD=a,AD=BC=b
    ∵S△ABE=6
    ∴AB×BE=6
    ∴BE=
    ∴EC=b﹣
    ∵S△EFC=2
    ∴EC×CF=2
    ∴CF=
    ∴DF=a﹣
    ∵S△ADF=5
    ∴AD×DF=5
    ∴b(a﹣)=10
    ∴(ab)2﹣26ab+120=0
    ∴ab=20或ab=6(不合题意舍去)
    ∴矩形ABCD的面积为20
    故答案为20
    此题考查了面积与等积变换的知识以及直角三角形与矩形的性质.此题难度适中,注意掌握方程思想与数形结合思想的应用.
    11、
    【解析】
    证明△BAE≌△CAD得到,从而证得,再得到AEBF是平行四边形,可得AE=BF,在三角形BCF中求出BF即可.
    【详解】
    作于H,
    ∵是等边三角形,,
    BC=AC=6
    在中, CF=4,
    ∵是等边三角形,是等边三角形
    AC=AB,AD=AE,

    AEBF是平行四边形
    AE=BF=
    本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
    12、1
    【解析】
    解:解如图所示:在RtABC中,BC=3,AC=5,
    由勾股定理可得:AB2+BC2=AC2
    设旗杆顶部距离底部AB=x米,则有32+x2=52,
    解得x=1
    故答案为:1.
    本题考查勾股定理.
    13、4.1.
    【解析】
    直接利用勾股定理得出AB的值,再利用直角三角形面积求法得出答案.
    【详解】
    ∵∠C=90°,AC=1,BC=6,∴AB2.
    ∵CD⊥AB,∴DC×AB=AC×BC,∴DC4.1.
    故答案为:4.1.
    本题考查了勾股定理,正确利用直角三角形面积求法是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、
    【解析】
    过P作PH⊥DC于H,交AB于G,由正方形的性质得到AD=AB=BC=DC=2;∠D=∠C=90°;再根据折叠的性质有PA=PB=2,∠FPA=∠EPB=90°,可判断△PAB为等边三角形,利用等边三角形的性质得到∠APB=60°,,于是∠EPF=10°,PH=HG﹣PG=2﹣,得∠HEP=30°,然后根据含30°的直角三角形三边可求出HE,得到EF,最后利用三角形的面积公式计算即可.
    【详解】
    解:过P作PH⊥DC于H,交AB于G,如图,
    则PG⊥AB,
    ∵四边形ABCD为正方形,
    ∴AD=AB=BC=DC=2;∠D=∠C=90°,
    又∵将正方形ABCD折叠,使点C与点D重合于形内点P处,
    ∴PA=PB=2,∠FPA=∠EPB=90°,
    ∴△PAB为等边三角形,
    ∴∠APB=60°,PG=AB=,
    ∴∠EPF=10°,PH=HG﹣PG=2﹣,
    ∴∠HEP=30°,
    ∴HE=PH=(2﹣)=2﹣3,
    ∴EF=2HE=4﹣6,
    ∴△EPF的面积=FE•PH=(2﹣)(4﹣6)
    =7﹣1.
    故答案为7﹣1.
    本题考查了折叠的性质:折叠前后的两图形全等,即对应角相等,对应线段相等.也考查了正方形和等边三角形的性质以及含30°的直角三角形三边的关系.
    15、(1)360;(2)y=;(3)16天
    【解析】
    (1)根据图象即可得到结论;
    (2)根据点的坐标,利用待定系数法可求出直线OA、AB的函数关系式,即可找出y与x之间的函数关系式;
    (3)根据日销售量=日销售利润÷每件的利润,可求出日销售量,将其分别代入OA、AB的函数关系式中求出x值,将其相减加1即可求出日销售利润不低于900元的天数.
    【详解】
    解:(1)由图象知,第18天的日销售量是360件;
    故答案为:360;
    (2)当时,设直线OA的函数解析式为:y=kx,
    把(18,360)代入得360=18k,
    解得:k=20,
    ∴y=20x(0≤x≤18),
    当18把(18,360),(1,10)代入得:,
    解得:,
    ∴直线AB的函数解析式为:y=-5x+450,
    综上所述,y与x之间的函数关系式为:y=;
    (3)当 0≤x≤18 时,根据题意得,(9-6)×20x≥900,解得:x≥15;
    当 18<x≤1 时,根据题意得,(9-6)×(-5x+450)≥900,解得:x≤1.
    ∴15≤x≤1;
    ∴1-15+1=16(天),
    ∴日销售利润不低于 900 元的天数共有 16天.
    本题考查了一次函数的应用,解题的关键是:根据点的坐标,利用待定系数法求出函数关系式;利用一次函数图象上点的坐标特征求出日销售利润等于900元的销售时间.
    16、(1)P(,2);(2)(,2)或(﹣,2)
    【解析】
    (1)根据已知条件得到C(5,3),设直线OC的解析式为y=kx,求得直线OC的解析式为y=x,设P(m,m),根据S△POB=S矩形OBCD,列方程即可得到结论;
    (2)设点P的纵坐标为h,得到点P在直线y=2或y=﹣2的直线上,作B关于直线y=2的对称点E,则点E的坐标为(5,4),连接OE交直线y=2于P,则此时PO+PB的值最小,设直线OE的解析式为y=nx,于是得到结论.
    【详解】
    (1)如图:
    ∵矩形OBCD中,OB=5,OD=3,
    ∴C(5,3),
    设直线OC的解析式为y=kx,
    ∴3=5k,
    ∴k=,
    ∴直线OC的解析式为y=x,
    ∵点P在矩形的对角线OC上,
    ∴设P(m,m),
    ∵S△POB=S矩形OBCD,
    ∴5×m=3×5,
    ∴m=,
    ∴P(,2);
    (2)∵S△POB=S矩形OBCD,
    ∴设点P的纵坐标为h,
    ∴h×5=5,
    ∴h=2,
    ∴点P在直线y=2或y=﹣2上,
    作B关于直线y=2的对称点E,
    则点E的坐标为(5,4),
    连接OE交直线y=2于P,则此时PO+PB的值最小,
    设直线OE的解析式为y=nx,
    ∴4=5n,
    ∴n=,
    ∴直线OE的解析式为y=x,
    当y=2时,x=,
    ∴P(,2),
    同理,点P在直线y=﹣2上,
    P(,﹣2),
    ∴点P的坐标为(,2)或(﹣,2).
    本题考查了轴对称——最短路线问题,矩形的性质,待定系数法求函数的解析式,正确的找到点P在位置是解题的关键.
    17、(1)G(0,4-);(2);(3).
    【解析】
    1(1)由F(1,4),B(3,4),得出AF=1,BF=2,根据折叠的性质得到GF=BF=2,在Rt△AGF中,利用勾股定理求出 ,那么OG=OA-AG=4-,于是G(0,4-);
    (2)先在Rt△AGF中,由 ,得出∠AFG=60°,再由折叠的性质得出∠GFE=∠BFE=60°,解Rt△BFE,求出BE=BF tan60°=2,那么CE=4-2,E(3,4-2).设直线EF的表达式为y=kx+b,将E(3,4-2),F(1,4)代入,利用待定系数法即可求出直线EF的解析.(3)因为M、N均为动点,只有F、G已经确定,所以可从此入手,结合图形,按照FG为一边,N点在x轴上;FG为一边,N点在y轴上;FG为对角线的思路,顺序探究可能的平行四边形的形状.确定平行四边形的位置与形状之后,利用平行四边形及平移的性质求得M点的坐标.
    【详解】
    解:(1)∵F(1,4),B(3,4),
    ∴AF=1,BF=2,
    由折叠的性质得:GF=BF=2,
    在Rt△AGF中,由勾股定理得,
    ∵B(3,4),
    ∴OA=4,
    ∴OG=4-,
    ∴G(0,4-);
    (2)在Rt△AGF中,
    ∵ ,
    ∴∠AFG=60°,由折叠的性质得知:∠GFE=∠BFE=60°,
    在Rt△BFE中,
    ∵BE=BFtan60°=2,
    .CE=4-2,
    .E(3,4-2).
    设直线EF的表达式为y=kx+b,
    ∵E(3,4-2),F(1,4),
    ∴ 解得
    ∴ ;
    (3)若以M、N、F、G为顶点的四边形是平行四边形,则分如下四种情况:
    ①FG为平行四边形的一边,N点在x轴上,GFMN为平行四边形,如图1所示.
    过点G作EF的平行线,交x轴于点N1,再过点N:作GF的平行线,交EF于点M,得平行四边形GFM1N1.
    ∵GN1∥EF,直线EF的解析式为
    ∴直线GN1的解析式为,
    当y=0时, .
    ∵GFM1N1是平行四边形,且G(0,4-),F(1,4),N1( ,0),
    ∴M,( ,);
    ②FG为平行四边形的一边,N点在x轴上,GFNM为平行四边形,如图2所示.
    ∵GFN2M2为平行四边形,
    ∴GN₂与FM2互相平分.
    ∴G(0,4-),N2点纵坐标为0
    ∴GN:中点的纵坐标为 ,
    设GN₂中点的坐标为(x,).
    ∵GN2中点与FM2中点重合,

    ∴x=
    ∵.GN2的中点的坐标为(),
    .∴N2点的坐标为(,0).
    ∵GFN2M2为平行四边形,且G(0,4-),F(1,4),N2(,0),
    ∴M2();
    ③FG为平行四边形的一边,N点在y轴上,GFNM为平行四边形,如图3所示.
    ∵GFN3M3为平行四边形,.
    ∴GN3与FM3互相平分.
    ∵G(0,4-),N2点横坐标为0,
    .∴GN3中点的横坐标为0,
    ∴F与M3的横坐标互为相反数,
    ∴M3的横坐标为-1,
    当x=-1时,y=,
    ∴M3(-1,4+2);
    ④FG为平行四边形的对角线,GMFN为平行四边形,如图4所示.
    过点G作EF的平行线,交x轴于点N4,连结N4与GF的中点并延长,交EF于点M。,得平行四边形GM4FN4
    ∵G(0,4-),F(1,4),
    ∴FG中点坐标为(),
    ∵M4N4的中点与FG的中点重合,且N4的纵坐标为0,
    .∴M4的纵坐标为8-.
    5-45解方程 ,得
    ∴M4().
    综上所述,直线EF上存在点M,使以M,N,F,G为顶点的四边形是平行四边形,此时M点坐标为: 。
    本题是一次函数的综合题,涉及到的考点包括待定系数法求一次函数的解析式,矩形、平行四边形的性质,轴对称、平移的性质,勾股定理等,对解题能力要求较高.难点在于第(3)问,这是一个存在性问题,注意平行四边形有四种可能的情形,需要一一分析并求解,避免遗漏.
    18、;
    【解析】
    根据分式的加法和除法可以化简题目中的式子,然后将的值代入化简后的式子即可解答本题.
    【详解】
    解:,



    当时,原式.
    本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    过点G作GM⊥AD于M,先证明△ABE∽△DEF,利用相似比计算出DF= ,再利用正方形的性质判断△DGM为等腰直角三角形得到DM=MG,设DM=x,则MG=x,EM=1-x,然后证明△EMG∽△EDF,则利用相似比可计算出GM,再利用三角形面积公式计算S△DEG即可.
    【详解】
    解:过点G作GM⊥AD于M,如图,
    ∵FE⊥BE,
    ∴∠AEB+∠DEF=90°,
    而∠AEB+∠ABE=90°,
    ∴∠ABE=∠DEF,
    而∠A=∠EDF=90°,
    ∴△ABE∽△DEF,
    ∴AB:DE=AE:DF,即2:1=1:DF,
    ∴DF=,
    ∵四边形ABCD为正方形,
    ∴∠ADB=45°,
    ∴△DGM为等腰直角三角形,
    ∴DM=MG,
    设DM=x,则MG=x,EM=1-x,
    ∵MG∥DF,
    ∴△EMG∽△EDF,
    ∴MG:DF=EM:ED,即x:=(1-x):1,解得x=,
    ∴S△DEG=×1×=,
    故答案为.
    本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.熟练运用相似比计算线段的长.
    20、
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10 ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    故答案为.
    此题考查科学记数法,解题关键在于掌握一般形式.
    21、①④
    【解析】
    矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形,由此可得能使平行四边形ABCD是矩形的条件是①和④.
    22、<
    【解析】
    根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    【详解】
    解:∵甲的成绩比乙的成绩稳定,
    ∴S2甲<S2乙,
    故答案为:<.
    本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    23、x<﹣2
    【解析】
    根据点A和点B的坐标得到一次函数图象经过第二、三、四象限,根据函数图象得到当x>-2时,图象在x轴上方,即y>1.
    【详解】
    解:∵一次函数y=ax+b的图象经过(-2,1)和点(1,-1),
    ∴一次函数图象经过第二、三、四象限,
    ∴当x<-2时,y>1,即ax+b>1,
    ∴关于x的不等式ax+b<1的解集为x<-2.故答案为:x<-2.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    二、解答题(本大题共3个小题,共30分)
    24、(1)40%,144;(2)详见解析;(3)250人
    【解析】
    (1)根据扇形统计图中的数据可以求得最喜欢A项目的人数所占的百分比,并求出其所在扇形统计图中对应的圆心角度数;
    (2)根据统计图中的数据可以求得选择A的人数,从而可以将条形统计图补充完整;
    (3)根据统计图中的数据可以求得全校最喜欢跑步的学生人数约是多少.
    【详解】
    解:(1)样本中最喜欢A项目的人数所占的百分比为:1﹣30%﹣10%﹣20%=40%,其所在扇形统计图中对应的圆心角度数是:360°×40%=144°,
    故答案为40%,144;
    (2)选择A的人有:45÷30%×40%=60(人),
    补全的条形统计图如右图所示;
    (3)2500×10%=250(人),
    答:全校最喜欢跑步的学生人数约是250人.
    本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    25、(1)y=3x﹣2;(2)图象见解析;(3)(﹣5,﹣4)不在这个函数的图象上;(4).
    【解析】
    (1)利用待定系数法即可求得;
    (2)利用两点法画出直线即可;
    (3)把x=﹣5代入解析式,即可判断;
    (4)求得直线与坐标轴的交点,即可求得.
    【详解】
    解:(1)设一次函数的解析式为y=kx+b
    ∵一次函数的图象经过点A(2,4)和B(﹣1,﹣5)两点
    ∴,
    解得:
    ∴一次函数的表达式为y=3x﹣2;
    (2)描出A、B点,作出一次函数的图象如图:
    (3)由(1)知,一次函数的表达式为y=3x﹣2
    将x=﹣5代入此函数表达式中得,y=3×(﹣5)﹣2=﹣17≠﹣4
    ∴(﹣5,﹣4)不在这个函数的图象上;
    (4)由(1)知,一次函数的表达式为y=3x﹣2
    令x=0,则y=﹣2,令y=0,则3x﹣2=0,
    ∴x=,
    ∴该函数图象与坐标轴围成的三角形面积为:×2×=.
    本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,一次函数的图象以及三角形的面积,熟练掌握待定系数法是解题的关键.
    26、①当0≤x≤3时,y与x之间的函数关系式为y=5x;
    ②;
    ③1<x<1.
    【解析】
    ①当0≤x≤3时,设y=mx(m≠0),根据图象当x=3时,y=15求出m即可;
    ②当3<x≤12时,设y=kx+b(k≠0),根据图象过点(3,15)和点(12,0),然后代入求出k和b即可;
    ③根据函数图象的增减性求出x的取值范围即可.
    【详解】
    解:①当0≤x≤3时,设y=mx(m≠0),
    则3m=15,
    解得m=5,
    ∴当0≤x≤3时,y与x之间的函数关系式为y=5x;
    ②当3<x≤12时,设y=kx+b(k≠0),
    ∵函数图象经过点(3,15),(12,0),
    ∴,解得:,
    ∴当3<x≤12时,y与x之间的函数关系式y=﹣x+20;
    ③当y=5时,由5x=5得,x=1;
    由﹣x+20=5得,x=1.
    ∴由图象可知,当容器内的水量大于5升时,时间x的取值范围是1<x<1.
    一次函数的解析式及其性质是本题的考点,根据题意读懂图象是解题的关键.
    题号





    总分
    得分
    批阅人
    相关试卷

    2024年四川省成都市高新南区—七级上期期九年级数学第一学期开学预测试题【含答案】: 这是一份2024年四川省成都市高新南区—七级上期期九年级数学第一学期开学预测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年四川省成都市大邑县数学九年级第一学期开学调研模拟试题【含答案】: 这是一份2024年四川省成都市大邑县数学九年级第一学期开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省成都市高新南区—七级上期期2023-2024学年数学九年级第一学期期末综合测试模拟试题含答案: 这是一份四川省成都市高新南区—七级上期期2023-2024学年数学九年级第一学期期末综合测试模拟试题含答案,共7页。试卷主要包含了将两个圆形纸片等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map