搜索
    上传资料 赚现金
    英语朗读宝

    山西省临汾市霍峰中学2024年数学九年级第一学期开学教学质量检测试题【含答案】

    山西省临汾市霍峰中学2024年数学九年级第一学期开学教学质量检测试题【含答案】第1页
    山西省临汾市霍峰中学2024年数学九年级第一学期开学教学质量检测试题【含答案】第2页
    山西省临汾市霍峰中学2024年数学九年级第一学期开学教学质量检测试题【含答案】第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山西省临汾市霍峰中学2024年数学九年级第一学期开学教学质量检测试题【含答案】

    展开

    这是一份山西省临汾市霍峰中学2024年数学九年级第一学期开学教学质量检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知直线不经过第一象限,则的取值范围是( ).
    A.B.C.D.
    2、(4分)如图,在矩形中,对角线、相交于点,垂直平分,若cm,则()
    A.B.C.D.
    3、(4分)如图所示的图象反映的过程是:宝室从家跑步去体育馆,在那里锻炼了一段时间后又走到文具店去买铅笔,然后散步回家图中x表示时间,y表示宝宝离家的距离,那么下列说法正确的是
    A.宝宝从文具店散步回家的平均速度是
    B.室宝从家跑步去体育馆的平均速度是
    C.宝宝在文具店停留了15分钟
    D.体育馆离宝宝家的距离是
    4、(4分)如图,在正方形中,相交于点,分别为上的两点,,,分别交于两点,连,下列结论:①;②;③;④ ,其中正确的是( )
    A.①②B.①④C.①②④D.①②③④
    5、(4分)如图,将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,则对于结论:①DE=BC;②∠EAC=∠DAB;③EA平分∠DEC;④若DE∥AC,则∠DEB=60°;其中正确结论的个数是( )
    A.4B.3C.2D.1
    6、(4分)若关于的不等式组至少有四个整数解,且关于的分式方程的解为整数,则符合条件的所有整数有( )
    A.3个B.4个C.5个D.2个
    7、(4分)已知关于x的一元二次方程x2+2x+k=0有实数根,则k的取值范围是( )
    A.k≥1B.k≤4C.k<1D.k≤1
    8、(4分)若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )
    A.2B.3C.5D.7
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,正方形的边长为6,点是上的一点,连接并延长交射线于点,将沿直线翻折,点落在点处,的延长线交于点,当时,则的长为________.
    10、(4分)统计学校排球队队员的年龄,发现有岁、岁、岁、岁等四种年龄,统计结果如下表,则根据表中信息可以判断表中信息可以判断该排球队队员的平均年龄是__________岁.
    11、(4分)数据,,,的平均数是4,方差是3,则数据,,,的平均数和方差分别是_____________.
    12、(4分)反比例函数y=的图象如图所示,A,P为该图象上的点,且关于原点成中心对称.在△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a-1)x2-x+=0的根的情况是________________.
    13、(4分)如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF⊥AE,垂足为F,若AD=AE=1,∠DAE=30°,则EF=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)知y+3与5x+4成正比例,当x=1时,y=—18,
    (1)求y关于x的函数关系。
    (2)若点(m,—8)在此图像上,求m的值。
    15、(8分)计算下列各题
    (1)
    (2)
    16、(8分)□ABCD中,AC=6,BD=10,动点P从B出发以每秒1个单位的速度沿射线BD匀速运动,动点Q从D出发以相同速度沿射线DB匀速运动,设运动时间为t秒.

    (1)当t =2时,证明以A、P、C、Q为顶点的四边形是平行四边形.
    (2)当以A、P、C、Q为顶点的四边形为矩形时,直接写出t的值.
    (3)设PQ=y,直接写出y与t的函数关系式.
    17、(10分)如图,直线与轴交于点,与轴交于点,与直线交于点,点的横坐标为3.
    (1)直接写出值________;
    (2)当取何值时,?
    (3)在轴上有一点,过点作轴的垂线,与直线交于点,与直线交于点,若,求的值.
    18、(10分)已知:如图,在四边形ABCD中,过A,C分别作AD和BC的垂线,交对角线BD于点E,F,AE=CF,BE=DF.
    (1)求证:四边形ABCD是平行四边形;
    (2)若BC=4,∠CBD=45°,且E,F是BD的三等分点,求四边形ABCD的面积.(直接写出结论即可)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为__________.
    20、(4分)小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是________分.
    21、(4分)如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=_____.
    22、(4分)若反比例函数y=的图象经过A(﹣2,1)、B(1,m)两点,则m=________.
    23、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D为平面内动点,且满足AD=4,连接BD,取BD的中点E,连接CE,则CE的最大值为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,矩形ABCD的边BC在x轴上,点A(a,4)和D分别在反比函数y=-和y=(m>0)的图象上.

    (1)当AB=BC时,求m的值。
    (2)连结OA,OD.当OD平方∠AOC时,求△AOD的周长.
    25、(10分)计算:
    (1);
    (2)先化简,再求值,;其中,x2,y2.
    26、(12分)安德利水果超市购进一批时令水果,20天销售完毕,超市将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量(千克)与销售时间(天)之间的函数关系如图甲所示,销售单价(元/千克)与销售时间(天)之间的函数关系如图乙所示。
    (1)直接写出与之间的函数关系式;
    (2)分别求出第10天和第15天的销售金额。
    (3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    试题解析:∵直线不经过第一象限,则有:
    解得:.
    故选.
    2、C
    【解析】
    由矩形的性质和线段垂直平分线的性质证出OA=AB=OB,根据AE求出OE即可解决问题.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴OB=OD,OA=OC,AC=BD,
    ∴OA=OB,
    ∵AE垂直平分OB,
    ∴AB=AO,
    ∴OA=AB=OB,
    ∵AE=cm,
    ∴OE=2 cm,
    ∴OD=OB=2OE=4 cm;
    故选:C.
    此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
    3、A
    【解析】
    根据特殊点的实际意义即可求出答案.
    【详解】
    解:A、宝宝从文具店散步回家的平均速度是,正确;
    B、室宝从家跑步去体育馆的平均速度是,错误;
    C、宝宝在文具店停留了分钟,错误;
    D、体育馆离宝宝家的距离是,错误.
    故选:A.
    本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.
    4、D
    【解析】
    ①易证得△ABE≌△BCF(ASA),则可得结论①正确;
    ②由△ABE≌△BCF,可得∠FBC=∠BAE,证得∠BAE+∠ABF=90°即可知选项②正确;
    ③根据△BCD是等腰直角三角形,可得选项③正确;
    ④证明△OBE≌△OCF,根据正方形的对角线将面积四等分,即可得出选项④正确.
    【详解】
    解:①∵四边形ABCD是正方形,
    ∴AB=BC,∠ABE=∠BCF=90°,
    在△ABE和△BCF中,AB=BC,∠ABE=∠BCF,BE=CF,
    ∴△ABE≌△BCF(SAS),
    ∴AE=BF,
    故①正确;
    ②由①知:△ABE≌△BCF,
    ∴∠FBC=∠BAE,
    ∴∠FBC+∠ABF=∠BAE+∠ABF=90°,
    ∴AE⊥BF,
    故②正确;
    ③∵四边形ABCD是正方形,
    ∴BC=CD,∠BCD=90°,
    ∴△BCD是等腰直角三角形,
    ∴BD=BC,
    ∴CE+CF=CE+BE=BC=,
    故③正确;
    ④∵四边形ABCD是正方形,
    ∴OB=OC,∠OBE=∠OCF=45°,
    在△OBE和△OCF中,OB=OC,∠OBE=∠OCF,BE=CF,
    ∴△OBE≌△OCF(SAS),
    ∴S△OBE=S△OCF,
    ∴S四边形OECF=S△COE+S△OCF=S△COE+S△OBE=S△OBC=S正方形ABCD,
    故④正确;
    故选:D.
    此题考查了正方形的性质,全等三角形的判定与性质以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键.
    5、A
    【解析】
    由旋转的性质可知,△ABC≌△ADE,DE=BC,可得①正确;∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,可得∠EAC=∠DAB,可判定②正确;AE=AC,则∠AEC=∠C,再由∠C=∠AED,可得∠AEC=∠AED;可判定③正确;根据平行线的性质可得可得∠C=∠BED,∠AEC=∠AED=∠C,根据平角的定义可得∠DEB=60°;综上即可得答案.
    【详解】
    ∵将△ABC绕点A旋转至△ADE的位置,使点E落在BC边上,
    ∴△ABC≌△ADE,
    ∴DE=BC,AE=AC,∠BAC=∠DAE,∠C=∠AED,故①正确;
    ∴∠CAE=∠CAB﹣∠BAE,∠DAB=∠DAE﹣∠BAE,
    ∴∠EAC=∠DAB;故②正确;
    ∵AE=AC,
    ∴∠AEC=∠C,
    ∴∠AEC=∠AED,
    ∴EA平分∠DEC;故③正确;
    ∵DE∥AC,
    ∴∠C=∠BED,
    ∵∠AEC=∠AED=∠C,
    ∴∠DEB=∠AEC=∠AED =60°,故④正确;
    综上所述:正确的结论是①②③④,共4个,
    故选:A.
    本题考查旋转的性质,旋转前、后的两个图形全等,对应边、对应角相等,对应点与旋转中心所连线段的夹角等于旋转角.
    6、C
    【解析】
    由不等式组至少有4个整数解,可得的取值范围,由方程的解是整数,可得的值,综合可得答案.
    【详解】
    解:因为
    由①得:,所以,
    由②得:<,即<,
    解得:>,又因为不等式组至少有4个整数解,
    所以,所以,
    又因为:,去分母得:,解得:,
    而方程的解为整数,所以,
    所以的值可以为:,
    综上的值可以为:,
    故选C.
    本题考查不等式组的整数解的问题,方程的整数解问题,都是初中数学学习的难点,关键是理解题意,其中不等式组的整数解利用数轴得到范围是解题关键.
    7、D
    【解析】
    由一元二次方程有实数根可得△=b2﹣4ac=22﹣4×k×1≥0,解不等式即可.
    【详解】
    ∵△=b2﹣4ac=22﹣4×k×1≥0,
    解得:k≤1,
    故选D.
    【点评】
    本题考查了一元二次方程根的判别式的应用,解此类题时切记不要忽略一元二次方程二次项系数不为零这一隐含条件.
    8、C
    【解析】
    试题解析:∵这组数据的众数为7,
    ∴x=7,
    则这组数据按照从小到大的顺序排列为:2,3,1,7,7,
    中位数为:1.
    故选C.
    考点:众数;中位数.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据翻折变换的性质可得AN=AB,∠BAE=∠NAE,再根据两直线平行,内错角相等可得∠BAE=∠F,从而得到∠NAE=∠F,根据等角对等边可得AM=FM,设CM=x,表示出DM、AM,然后利用勾股定理列方程求出x的值,从而得到AM的值,最后根据NM=AM-AN计算即可得解.
    【详解】
    ∵△ABE沿直线AE翻折,点B落在点N处,
    ∴AN=AB=6,∠BAE=∠NAE,
    ∵正方形对边AB∥CD,
    ∴∠BAE=∠F,
    ∴∠NAE=∠F,
    ∴AM=FM,
    设CM=x,∵AB=2CF=8,
    ∴CF=3
    ∴DM=6−x,AM=FM=3+x,
    在Rt△ADM中,由勾股定理得,,

    解得x=,
    所以,AM=3+=,
    所以,NM=AM−AN=−6=
    本题考查翻折变换,解题关键在于熟练掌握勾股定理的性质.
    10、
    【解析】
    计算出学校排球队队员的总年龄再除以总人数即可.
    【详解】
    解:(岁)
    所以该排球队队员的平均年龄是14岁.
    故答案为:14
    本题考查了平均数,掌握求平均数的方法是解题的关键.
    11、41,3
    【解析】
    试题分析:根据题意可知原数组的平均数为,方差为=3,然后由题意可得新数据的平均数为,可求得方程为.
    故答案为:41,3.
    12、没有实数根
    【解析】
    分析:由比例函数y=的图象位于一、三象限得出a+4>0,A、P为该图象上的点,且关于原点成中心对称,得出1xy>11,进一步得出a+4>6,由此确定a的取值范围,进一步利用根的判别式判定方程根的情况即可.
    详解:∵反比例函数y=的图象位于一、三象限,
    ∴a+4>0,
    ∴a>-4,
    ∵A、P关于原点成中心对称,PB∥y轴,AB∥x轴,△PAB的面积大于11,
    ∴1xy>11,
    即a+4>6,a>1
    ∴a>1.
    ∴△=(-1)1-4(a-1)×=1-a<0,
    ∴关于x的方程(a-1)x1-x+=0没有实数根.
    故答案为:没有实数根.
    点睛:此题综合考查了反比例函数的图形与性质,一元二次方程根的判别式,注意正确判定a的取值范围是解决问题的关键.
    13、﹣1
    【解析】
    首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BG,AD=BC,
    ∴∠DAE=∠G=30°,
    ∵DE=EC,∠AED=∠GEC,
    ∴△ADE≌△GCE,
    ∴AE=EG=AD=CG=1,
    在Rt△BFG中,∵FG=BG•cs30°=,
    ∴EF=FG-EG=-1,
    故答案为-1.
    本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.
    三、解答题(本大题共5个小题,共48分)
    14、 (1) y=x;
    (2) m=.
    【解析】
    (1)设y+3=k(5x+4),把x=1,y=-18代入求出k的值,进而可得出y与x的函数关系式;
    (2)直接把点(m,-8)代入(1)中一次函数的解析式即可.
    【详解】
    (1)∵y+3与5x+4成正比例,
    ∴设y+3=k(5x+4),
    ∵当x=1时,y=−18,
    ∴−18+3=k(5+4),解得k=,
    ∴y关于x的函数关系式为: (5x+4)=y+3,即y=x;
    (2)∵点(m,−8)在此图象上,
    ∴−8=m,解得m=.
    本题考查一次函数,解题的关键是掌握待定系数法求解析式.
    15、 (1)1;(2) -12+4.
    【解析】
    (1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;
    (2)利用完全平方公式和平方差公式展开,然后再进行合并即可.
    【详解】
    (1)原式=(4 -2)÷2
    =2÷2
    =1;
    (2)原式=5-3-(12-4+2)
    =2-14+4
    =-12+4.
    本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.
    16、 (1)见解析;(2) t =2或t =8;(3) y=-2t+10(0≤t≤5时),y=2y-10(t>5时).
    【解析】
    分析:(1)只需要证明四边形APCQ的对角线互相平分即可证明其为平行四边形.
    (2)根据矩形的性质可知四边形APCQ的对角线相等,然后分两种情况即可解答.
    (3)根据(2)中的图形,分两种情况进行讨论即可.
    详解:(1)证明:∵四边形ABCD是平行四边形,
    ∴OA=OC=3,OB=OD=5,
    当t=2时,BP=QD=2,
    ∴OP=OQ=3,
    ∴四边形APCQ是平行四边形;
    (2)t =2或t =8;
    理由如下:
    图一:
    图二:
    ∵四边形APCQ是矩形,
    ∴PQ=AC=6,
    则BQ=PD=2,
    第一个图中,BP=6+2=8,则此时t=8;
    第二个图中,BP=2,则此时t=2.
    即以A、P、C、Q为顶点的四边形为矩形时,t的值为2或8;
    (3)根据(2)中的两个图形可得出:
    y=-2t+10(时),
    y=2y-10(时).
    点睛:本题主要考查了矩形的性质和平行四边形的判定,结合题意画出图形是解答本题的关键.
    17、(1);(2)当时,;(3)或.
    【解析】
    (1)先求出点E的坐标,再把E的坐标代入解析式即可
    (2)根据点E的坐标,结合图象即可解答
    (3)过作轴交直线于点、交直线于点,根据题意求出的坐标为,再令,得出的坐标为,根据OE,AB的解析式得出点的坐标为,点的坐标为,即可解答
    【详解】
    (1)∵直线与直线交于点,点的横坐标为3
    ∴点的坐标为,代入中

    (2)∵点的坐标为,有图像可知,当时,.
    (3)过作轴交直线于点、交直线于点


    ∴点的坐标为

    令,∴
    ∴点的坐标为
    ∵点,
    直线的解析式为,直线的解析式为
    ∴点的坐标为,点的坐标为



    ∴或
    ∴或
    此题考查一次函数中的直线位置关系,解题关键在于作辅助线
    18、(1)证明见解析;(2)1.
    【解析】
    (1)证Rt△ADE≌Rt△CBF(HL),得AD=BC,∠ADE=∠CBF,AD∥BC,故四边形ABCD是平行四边形;(2)过C作CH⊥BD于H,证△CBF是等腰直角三角形,得BF=BC=4,CH=BC=2,得BD=6,故四边形ABCD的面积=BD•CH.
    【详解】
    (1)证明:∵AE⊥AD,CF⊥BC,
    ∴∠DAE=∠BCF=90°,
    ∵BE=DF,
    ∴BE+EF=DF+EF,
    即BF=DE,
    在Rt△ADE与Rt△CBF中,

    ∴Rt△ADE≌Rt△CBF(HL),
    ∴AD=BC,∠ADE=∠CBF,
    ∴AD∥BC,
    ∴四边形ABCD是平行四边形;
    (2)解:过C作CH⊥BD于H,
    ∵∠CBD=45°,
    ∴△CBF是等腰直角三角形,
    ∴BF=BC=4,CH=BC=2,
    ∵E,F是BD的三等分点,
    ∴BD=6,
    ∴四边形ABCD的面积=BD•CH=1.
    熟记平行四边形的判定和性质是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据勾股定理,可得AC的长,根据圆的性质,可得答案.
    【详解】
    由题意得
    故可得,
    又∵点B的坐标为2
    ∴M点的坐标是,
    故答案为:.
    此题考查勾股定理,解题关键在于结合实数与数轴解决问题.
    20、79
    【解析】
    解:本学期数学总评分=70×30%+80×30%+85×40%=79(分)
    故答案为79
    21、1
    【解析】
    分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=3,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=AM=1.
    详解:∵BD=CD,AB=CD,
    ∴BD=BA,
    又∵AM⊥BD,DN⊥AB,
    ∴DN=AM=3,
    又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,
    ∴∠P=∠PAM,
    ∴△APM是等腰直角三角形,
    ∴AP=AM=1,
    故答案为1.
    点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.
    22、-2
    【解析】
    将点A代入反比例函数解出k值,再将B的坐标代入已知反比例函数解析式,即可求得m的值.
    【详解】
    解:∵反比例函数y=,它的图象经过A(-2,1),
    ∴1=,
    ∴k=-2
    ∴y=,
    将B点坐标代入反比例函数得,
    m=,
    ∴m=-2,
    故答案为-2.
    本题考查了反比例函数图象上点的坐标特征:反比例函数(k是常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    23、1.
    【解析】
    作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后确定CM的范围.
    【详解】
    解:作AB的中点M,连接EM、CM.
    在Rt△ABC中,AB===10,
    ∵M是直角△ABC斜边AB上的中点,
    ∴CM=AB=3.
    ∵E是BD的中点,M是AB的中点,
    ∴ME=AD=3.
    ∴3﹣3≤CE≤3+3,即3≤CE≤1.
    ∴最大值为1,
    故答案为:1.
    本题考查了三角形的中位线定理,勾股定理,直角三角形斜边中线的性质等知识,掌握基本性质定理是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)4 (4)10+4
    【解析】
    (1)把A点坐标代入反比例函数式,求出a值,则A的横坐标可知,由条件知AB=BC,求出OC的长度,则求出D点的坐标,把D点坐标代入,则可求出m的值.
    (4)现知A点坐标,则可求出OA的长度,根据角平分线的定义和两直线平行内错角相等,等量代换得出 ∠ADO=∠AOD ,所以AO=AD=3,则OC的长度可求,现知DC的长度,用勾股定理即可求出OD的长度,则△AOD的周长可求.
    【详解】
    (1)当y=4时,a==-1,
    ∴OB=1.
    ∵矩形ABCD,且AB=BC,
    ∴AB=BC=CD=4,
    ∴OC=1,
    ∴D(1,4),
    ∴m=4.
    (4)∵ ∠ABO=90°,A(-1,4),
    ∴OA=3.
    ∵OD平分∠AOC,
    ∴∠AOD=∠DOC.
    ∵AD∥BC,
    ∴∠ADO=∠DOC,
    ∴∠ADO=∠AOD,
    ∴DA=OA=3,
    ∴OC=4.
    ∵∠OCD=90°,
    ∴OD,
    ∴△AOD的周长是10+4.
    本题考查了反比例函数与四边形的综合,灵活应用矩形的性质及等角对等边这一性质求线段长是解题的关键.
    25、(1);(2)2.
    【解析】
    (1)根据二次根式和零指数幂进行化简,再进行加减运算即可得到答案;
    (2)先根据平方差公式对进行化简,再代入x2,y2,计算即可得到答案.
    【详解】
    (1)
    =
    =
    =
    (2)
    =
    =
    =
    将x2,y2代入得到=2.
    本题考查平方差公式、二次根式和零指数幂,解题的关键是掌握平方差公式、二次根式和零指数幂.
    26、(1);(2)200元,270元;(3)“最佳销售期”共有5天,销售单价最高为9.6元 .
    【解析】
    (1)分两种情况进行讨论:①0≤x≤15;②15<x≤20,针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利用待定系数法求解;
    (2)日销售金额=日销售单价×日销售量.由于第10天和第15天在第10天和第20天之间,当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数关系式为p=mx+n,由点(10,10),(20,8)在p=mx+n的图象上,利用待定系数法求得p与x的函数解析式,继而求得10天与第15天的销售金额;
    (3)日销售量不低于1千克,即y≥1.先解不等式2x≥1,得x≥12,再解不等式-6x+120≥1,得x≤16,则求出“最佳销售期”共有5天;然后根据p=x+12(10≤x≤20),利用一次函数的性质,即可求出在此期间销售时单价的最高值.
    【详解】
    解:(1) 分两种情况:
    ①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,
    ∵直线y=k1x过点(15,30),
    ∴15k1=30,解得k1=2,
    ∴y=2x(0≤x≤15);
    ②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,
    ∵点(15,30),(20,0)在y=k2x+b的图象上,
    ∴ ,解得: ,
    ∴y=-6x+120(15<x≤20);
    综上,可知y与x之间的函数关系式为:
    (2) )∵第10天和第15天在第10天和第20天之间,
    ∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,
    ∵点(10,10),(20,8)在p=mx+n的图象上,
    ∴ ,解得: ,
    ∴(10≤x≤20),
    当时,销售单价为10元,销售金额为10×20=200(元);当时,销售单价为9元,销售金额为9×30=270(元);
    (3) 若日销售量不低于1千克,则,当时,,由得;当时,,由,得,∴,
    ∴“最佳销售期”共有16-12+1=5(天).
    ∵,,
    ∴随的增大而减小,∴当时,
    取12时有最大值,此时,即销售单价最高为9.6元 .
    故答案为:(1);(2)200元,270元;(3)“最佳销售期”共有5天,销售单价最高为9.6元 .
    本题考查一次函数的应用,有一定难度.解题的关键是理解题意,利用待定系数法求得函数解析式,注意数形结合思想与函数思想的应用.
    题号





    总分
    得分
    年龄/岁
    人数/个

    相关试卷

    2024年山西省临汾市数学九上开学教学质量检测模拟试题【含答案】:

    这是一份2024年山西省临汾市数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山西省临汾市侯马市九年级数学第一学期开学达标检测试题【含答案】:

    这是一份2024年山西省临汾市侯马市九年级数学第一学期开学达标检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山西省临汾市襄汾县数学九上开学教学质量检测试题【含答案】:

    这是一份2024-2025学年山西省临汾市襄汾县数学九上开学教学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map