山西省洪洞县2024-2025学年九上数学开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数y=6x+1的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
2、(4分)每千克m元的糖果x千克与每千克n元的糖果y千克混合成杂拌糖,则这种杂拌糖每千克的价格为 ( )
A.元B.元C.元D.元
3、(4分)ABC 的内角分别为A 、B 、C ,下列能判定ABC 是直角三角形的条件是( )
A.A 2B 3CB.C 2BC.A : B : C 3 : 4 : 5D.A B C
4、(4分)分式可变形为( )
A.B.C.D.
5、(4分)下列从左到右的变形,是因式分解的是( )
A.2(a﹣b)=2a﹣2bB.
C.D.
6、(4分)如图是小军设计的一面彩旗,其中,,点在上,,则的长为( )
A.B.C.D.
7、(4分)若分式有意义,则x应满足的条件是( )
A.x≠0B.x=2C.x>2D.x≠2
8、(4分)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是( ).
A.50元,30元B.50元,40元
C.50元,50元D.55元,50元
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若关于x的分式方程=有增根,则m的值为_____.
10、(4分)如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是
11、(4分)等边三角形的边长为6,则它的高是________
12、(4分)张老师对同学们的打字能力进行测试,他将全班同学分成五组.经统计,这五个小组平均每分钟打字个数如下:100,80,x,90,90,已知这组数据的众数与平均数相等,那么这组数据的中位数是 .
13、(4分)对于平面内任意一个凸四边形ABCD,现从以下四个关系式: ①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又原路返回,顺路到文具店去买笔,然后散步回家.其中x表示时间,y表示张强离家的距离.根据图象回答:
(1)体育场离张强家的多远?张强从家到体育场用了多长时间?
(2)体育场离文具店多远?
(3)张强在文具店逗留了多久?
(4)计算张强从文具店回家的平均速度.
15、(8分)在直角坐标系中,直线l1经过(2,3)和(-1,-3):直线l2经过原点O,且与直线l1交于点P(-2,a).
(1)求a的值;
(2)(-2,a)可看成怎样的二元一次方程组的解?
16、(8分)为迎接省“义务教育均衡发展验收”,某广告公司承担了制作宣传牌任务,安排甲、乙两名工人制作,由于乙工人采用了新式工具,其工作效率比甲工人提高了20%,同样制作30个宣传牌,乙工人比甲工人节省了一天时间:
(1)求甲乙两名工人每天各制作多少个宣传牌?
(2)现在需要这两名工人合作完成44个宣传牌制作在务,应如何分配,才能让两名工人同时完成任务?
17、(10分)如图,已知:AD为△ABC的中线,过B、C两点分别作AD所在直线的垂线段BE和CF,E、F为垂足,过点E作EG∥AB交BC于点H,连结HF并延长交AB于点P.
(1)求证:DE=DF
(2)若;①求:的值;②求证:四边形HGAP为平行四边形.
18、(10分)给出三个多项式:,请选择两个多项式进行加法运算,并把结果分解因式(写出两种情况).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一个数的平方等于这个数本身,这个数为_________.
20、(4分)要使式子有意义,则的取值范围是__________.
21、(4分)已知 ,,则=______。
22、(4分)一次函数与轴的交点坐标为__________.
23、(4分)命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是 ___________________ .它是 ________ 命题(填“真”或“假”).
二、解答题(本大题共3个小题,共30分)
24、(8分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数(度)是镜片焦距(厘米)()的反比例函数,调查数据如下表:
(1)求与的函数表达式;
(2)若小明所戴近视眼镜镜片的度数为度,求该镜片的焦距.
25、(10分)先化简分式,后在,0,1,2中选择一个合适的值代入求值.
26、(12分)如图,在平面直角坐标系中,有一,且,,,已知是由绕某点顺时针旋转得到的.
(1)请写出旋转中心的坐标是 ,旋转角是 度;
(2)以(1)中的旋转中心为中心,分别画出顺时针旋转90°、180°的三角形;
(3)设两直角边、、斜边,利用变换前后所形成的图案验证勾股定理.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题分析:先判断出一次函数y=6x+1中k的符号,再根据一次函数的性质进行解答即可.
解:∵一次函数y=6x+1中k=6>0,b=1>0,
∴此函数经过一、二、三象限,
故选D.
2、B
【解析】
解:由题意可得杂拌糖总价为mx+ny,总重为x+y千克,那么杂拌糖每千克的价格为元.故选B.
3、D
【解析】
根据直角三角形的性质即可求解.
【详解】
若A B C
又A B +C=180°
∴2∠C=180°,得∠C=90°,故为直角三角形,
故选D.
此题主要考查直角三角形的判定,解题的关键是熟知三角形的内角和.
4、B
【解析】
根据分式的基本性质进行变形即可.
【详解】
=.
故选B.
此题主要考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.
5、D
【解析】
根据因式分解的定义,把一个多项式变形为几个整式的积的形式是分解因式进行分析即可得出.
【详解】
解:由因式分解的定义可知:
A. 2(a﹣b)=2a﹣2b,不是因式分解,故错误;
B. ,不是因式分解,故错误;
C. ,左右两边不相等,故错误;
D. 是因式分解;
故选:D
本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键.
6、B
【解析】
先求出∠ABD=∠D,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAC=30°,然后根据30°所对的直角边等于斜边的一半求出BC的长度是2cm,再利用勾股定理解答.
【详解】
解:如图,∵AD=AB=4cm,∠D=15°,
∴∠ABD=∠D=15°,
∴∠BAC=∠ABD+∠D=30°,
∵∠ACB=90°,AB=4cm,
,
在Rt△ABC中,,
故选:B.
本题主要考查了含30度角的直角三角形的边的关系,等腰三角形的等边对等角的性质,三角形的外角性质,熟练掌握性质定理是解题的关键.
7、D
【解析】
本题主要考查分式有意义的条件:分母不能为1.
【详解】
解:由代数式有意义可知:x﹣2≠1,
∴x≠2,
故选:D.
本题考查的是分式有意义的条件,当分母不为1时,分式有意义.
8、C
【解析】
1出现了3次,出现的次数最多,
则众数是1;
把这组数据从小到大排列为:20,25,30,1,1,1,55,
最中间的数是1,
则中位数是1.
故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入化为整式方程的方程算出m的值.
【详解】
解:去分母得:3x=m+3,
由分式方程有增根,得到x﹣2=0,即x=2,
把x=2代入方程得:6=m+3,
解得:m=3,
故答案为:3
此题考查分式方程的增根,解题关键在于得到x的值.
10、(,0).
【解析】
试题分析:∵正方形的顶点A(m,2),
∴正方形的边长为2,
∴BC=2,
而点E(n,),
∴n=2+m,即E点坐标为(2+m,),
∴k=2•m=(2+m),解得m=1,
∴E点坐标为(3,),
设直线GF的解析式为y=ax+b,
把E(3,),G(0,﹣2)代入得,
解得,
∴直线GF的解析式为y=x﹣2,
当y=0时,x﹣2=0,解得x=,
∴点F的坐标为(,0).
考点:反比例函数与一次函数的交点问题.
11、
【解析】
根据等边三角形的性质:三线合一,利用勾股定理可求解高.
【详解】
由题意得底边的一半是3,再根据勾股定理,得它的高为=3,
故答案为3.
本题考查的是等边三角形的性质,勾股定理,解答本题的关键是掌握好等腰三角形的三线合一:底边上的高、中线,顶角平分线重合.
12、1.
【解析】
∵100,80,x,1,1,这组数据的众数与平均数相等,
∴这组数据的众数只能是1,否则,x=80或x=100时,出现两个众数,无法与平均数相等.
∴(100+80+x+1+1)÷5=1,解得,x=1.
∵当x=1时,数据为80,1,1,1,100,
∴中位数是1.
13、
【解析】
从四个条件中选两个共有六种可能:①②、①③、①④、②③、②④、③④,
其中只有①②、①③和③④可以判断四边形ABCD是平行四边形,所以能够得出这个四边形ABCD是平行四边形的概率是 .
点睛:本题用到的知识点:概率=所求情况数与总情况数之比;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;一组对边平行,一组对角相等的四边形是平行四边形.
三、解答题(本大题共5个小题,共48分)
14、(1)体育场离张强家2.5km,张强从家到体育场用了15min;(2)体育场离文具店1km;(3) 张强在文具店逗留了20min;(4)张强从文具店回家的平均速度为km/min
【解析】
(1)根据张强锻炼时时间增加,路程没有增加,表现在函数图象上就出现第一次与x轴平行的图象;
(2)由图中可以看出,体育场离张强家2.5千米,文具店离张强家1.5千米,得出体育场离文具店距离即可;
(3)张强在文具店逗留,第二次出现时间增加,路程没有增加,时间为:65-1.
(4)根据观察函数图象的纵坐标,可得路程,根据观察函数图象的横坐标,可得回家的时间,根据路程与时间的关系,可得答案.
【详解】
解:(1)从图象上看,体育场离张强家2.5km,张强从家到体育场用了15min.
(2)2.5-1.5=1(km),
所以体育场离文具店1km.
(3)65-1=20(min),
所以张强在文具店逗留了20min.
(4)1.5÷(100-65)= (km/min),
张强从文具店回家的平均速度为km/min.
此题主要考查了函数图象,正确理解函数图象横纵坐标表示的意义是解答此题的关键,需注意理解时间增多,路程没有变化的函数图象是与x轴平行的一条线段.
15、(1)a=-5;(2)可以看作二元一次方程组的解.
【解析】
(1)首先利用待定系数法求得直线的解析式,然后直接把P点坐标代入可求出a的值;
(2)利用待定系数法确定l2得解析式,由于P(-2,a)是l1与l2的交点,所以点(-2,-5)可以看作是解二元一次方程组所得.
【详解】
.解:(1)设直线 的解析式为y=kx+b,将(2,3),(-1,-3)代入,
,解得,所以y=2x-1.
将x=-2代入,得到a=-5;
(2)由(1)知点(-2,-5)是直线与直线 交点,则:y=2.5x;
因此(-2,a)可以看作二元一次方程组的解.
故答案为:(1)a=-5;(2)可以看作二元一次方程组的解.
本题综合考查待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及一次函数与二元一次方程组.
16、 (1)甲工人每天制作5个宣传牌,乙工人每天制作6个;(2)给甲分配制作20个,乙制作24个.
【解析】
(1)设甲工人每天完成x个宣传牌,则乙工人每天完成1.2x个宣传牌,根据完成30个宣传牌工作,乙工人比甲工人节省了一天时间列出方程解答即可;
(2)根据(1)中求得的数据,设甲完成a个宣传牌,则乙完成(44-a)个宣传牌,根据所用时间相等列出方程解答即可.
【详解】
解:(1)设甲工人每天制作x个宣传牌,则乙工人每天制(1+20%)x=1.2x个,由题意得
解得x=5
经检验x=5是原方程的解且符合题意
∴1.2x=6
答:甲工人每天制作5个宣传牌,乙工人每天制作6个.
(2) 设甲完成a个宣传牌,则乙完成(44-a)个宣传牌,
由题意得: ,
解得:a=20,
44-a=24,
答:给甲分配制作20个,乙制作24个 ,才能让两名工人同时完成任务.
故答案为:(1)甲工人每天制作5个宣传牌,乙工人每天制作6个;(2)给甲分配制作20个,乙制作24个.
本题考查分式方程的实际运用、一元一次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.
17、(1)见解析;(2)①,②见解析.
【解析】
(1)根据AD是△ABC的中线得到BD=CD,根据对顶角相等得到∠FDC=∠EDB,又因为∠DFC=∠DEB=90°,即可证得△BDE≌△CDF,继而证出DE=DF;(2)设BH=11x,HC=5x,则BD=CD=BC=8x,DH=3x,HC=5x,根据EH∥AB可得△EDH∽△ADB,再根据相似三角形对应边成比例以及DE=DF得到的值;②进一步求出的值,得到,再根据平行线分线段成比例定理证得FH∥AC ,即PH∥AC,再根据两组对边分别平行的四边形是平行四边形这一定理即可证得四边形HGAP为平行四边形.
【详解】
解:(1)∵AD是△ABC的中线,∴BD=CD,
∵∠FDC和∠EDB是对顶角,∴∠FDC=∠EDB ,
又∵BE⊥AE,CF⊥AE,∴∠DFC=∠DEB=90°,
∴△BDE≌△CDF(AAS),∴DE=DF.
(2)设则
① ∵EH∥AB
∴△EDH∽△ADB ∴∵
∴
②∵ ∴∵∴FH∥AC ∴PH∥AC
∵EG∥AB∴四边形HGAP为平行四边形
本题主要考查了三角形中线的性质、全等三角形的判定和性质、相似三角形的判定与性质、平行线分线段成比例定理以及平行四边形的判定等知识,解题的关键是理解题意,掌握数形结合的思想并学会灵活运用知识点.
18、答案不唯一,详见解析
【解析】
选择第一个与第二个,第一个与第三个,利用整式的加法运算法则计算,然后再利用提公因式法或平方差公式进行因式分解即可.
【详解】
情形一:
情形二:
此题主要考查了多项式的计算,以及分解因式,关键是正确求出多项式的和,找出公因式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、0或1
【解析】
根据特殊数的平方的性质解答.
【详解】
解:平方等于这个数本身的数只有0,1.
故答案为:0或1.
此题考查了特殊数值的平方的性质,要注意平时在学习中进行积累.
20、
【解析】
根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.
【详解】
由题意得:
2-x≥0,
解得:x≤2,
故答案为x≤2.
21、60
【解析】
=2ab(a+b),将a+b=3,ab=10,整体带入即可.
【详解】
=2ab(a+b)=2×3×10=60.
本题主要考查利用提公因式法分解因式,整体带入是解决本题的关键.
22、
【解析】
令y=0,即可求出交点坐标.
【详解】
令y=0,得x=1,
故一次函数与x轴的交点为
故填
此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.
23、如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 真
【解析】
分析:把一个命题的条件和结论互换就得到它的逆命题.命题“直角三角形斜边上的中线等于斜边的一半”的条件是直角三角形,结论是斜边上的中线等于斜边的一半,故其逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.
详解:定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.它是真命题.
故答案为如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;真.
点睛:本题考查了互逆命题的知识及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
二、解答题(本大题共3个小题,共30分)
24、(1),;(2)该镜片的焦距为.
【解析】
(1)根据图表可以得到眼镜片的度数与焦距的积是一个常数,因而眼镜片度数与镜片焦距成反比例函数关系,即可求解;
(2)在解析式中,令y=500,求出x的值即可.
【详解】
(1)根据题意,设与的函数表达式为
把,代入中,得
∴与的函数表达式为.
(2)当时,
答:该镜片的焦距为.
考查了反比例函数的应用,正确理解反比例函数的特点,两个变量的乘积是常数,是解决本题的关键.
25、,.
【解析】
先对进行化简,再选择-1,0,1代入计算即可.
【详解】
原式
因为且
所以当时,原式
当时,原式
考查了整式的化简求值,解题关键是熟记分式的运算法则.
26、(1)旋转中心坐标是,旋转角是;(2)见解析;(3)见解析
【解析】
(1)由图形可知,对应点的连线CC1、AA1的垂直平分线过点O,根据旋转变换的性质,点O即为旋转中心,再根据网格结构,观察可得旋转角为90°;
(2)利用网格结构,分别找出旋转后对应点的位置,然后顺次连接即可;
(3)利用面积,根据正方形CC1C2C3的面积等于正方形AA1A2B的面积加上△ABC的面积的4倍,列式计算即可得证.
【详解】
(1)旋转中心坐标是,旋转角是
(2)画出图形如图所示.
(3)由旋转的过程可知,四边形和四边形是正方形.
∵,
∴,
,
∴.
即中,,
本题考查了利用旋转变换作图,旋转变换的旋转以及对应点连线的垂直平分线的交点即为旋转中心,勾股定理的证明,熟练掌握网格结构,找出对应点的位置是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
眼镜片度数(度)
…
镜片焦距(厘米)
…
山西省(太原临汾地区)2025届九上数学开学学业质量监测试题【含答案】: 这是一份山西省(太原临汾地区)2025届九上数学开学学业质量监测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广西合浦县2024-2025学年数学九上开学学业质量监测试题【含答案】: 这是一份广西合浦县2024-2025学年数学九上开学学业质量监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。