2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,菱形中,于,交于F,于,若的周长为4,则菱形的面积为( ).
A.B.C.16D.
2、(4分)如图,在△ABC 中, AB 的垂直平分线交 BC 于 D,AC 的中垂线交 BC 于 E,∠BAC=112°,则∠DAE 的度数为( )
A.68°B.56°C.44°D.24°
3、(4分)化简结果正确的是( )
A.xB.1C.D.
4、(4分)若关于的一元二次方程的一个根是0,则的值是( )
A.1B.-1C.1或-1D.
5、(4分)在四边形中,对角线,相交于点,,,添加下列条件,不能判定四边形是菱形的是( ).
A.B.C.D.
6、(4分)为了解某社区居民的用水情况,随机抽取20户居民进行调查,下表是所抽查居民2018年5月份用水量的调查结果:那么关于这次用水量的调查和数据分析,下列说法错误的是( )
A.中位数是10(吨)B.众数是8(吨)
C.平均数是10(吨)D.样本容量是20
7、(4分)下列各组数中不能作为直角三角形的三边长的是( )
A.7,24,25B.,4,5C.,1,D.40,50,60
8、(4分)如图,直线y=kx+b过A(-1,2),B(-2,0)两点,则0≤kx+b≤-2x的解集为( )
A.x≤-2或x≥-1B.0≤y≤2C.-2≤x≤0D.-2≤x≤-1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一组数据3、x、4、5、6,若该组数据的众数是5,则x的值是_____.
10、(4分)一组数据x1,x2,…,xn的平均数是2,方差为1,则3x1,3x2,…,3xn,的方差是_____.
11、(4分)当x______时,在实数范围内有意义.
12、(4分)使函数 有意义的 的取值范围是________.
13、(4分)当x≤2时,化简:=________
三、解答题(本大题共5个小题,共48分)
14、(12分)某乡镇组织300名干部、群众参加义务植树活动,下表是随机抽出的50名干部、群众义务植树的统计,根据图中的数据回答下列问题:
(1)这50个人平均每人植树多少棵?植树棵数的中位数是多少?
(2)估计该乡镇本次活动共植树多少棵?
15、(8分)如图,四边形是正方形,点是上的任意一点,于点,交于点.求证:
16、(8分)已知:如图,,,求的面积.
17、(10分)消费者在网店购物后,将从“好评、中评、差评”中选择一种作为对卖家的评价,假设这三种评价是等可能的,若小明、小亮在某网店购买了同一商品,且都给出了评价,则两人中至少有一个给“好评”的概率为( )
A.B.C.D.
18、(10分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在中,,,,,分别为,,的中点,,则的长度为__.
20、(4分)如图,四边形ABCD是正方形,△EBC是等边三角形,则∠AED的度数为_________.
21、(4分)对分式和进行通分,它们的最简公分母是________.
22、(4分)如图,已知E是正方形ABCD的边AB上一点,点A关于DE的对称点为F,若正方形ABCD的边长为1,且∠BFC=90°,则AE的长为___
23、(4分)已知直角三角形的周长为14,斜边上的中线长为3. 则直角三角形的面积为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,的对角线、相交于点,.
(1)求证:;
(2)若,连接、,判断四边形的形状,并说明理由.
25、(10分)函数 y=(m-2)x+m2-4 (m为常数).
(1)当m取何值时, y是x的正比例函数?
(2) 当m取何值时, y是x的一次函数?
26、(12分)某种型号油电混合动力汽车,从A地到B地燃油行驶需纯燃油费用76元,从A地到B地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.
(1)求每行驶1千米纯用电的费用;
(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由菱形的性质得到∠BCD=45°,推出△BFG与△BEC是等腰直角三角形,根据全等三角形的性质得到FG=FE,CG=CE,设BG=FG=EF=x,得到BF=x,根据△BFG的周长为4,列方程x+x+x=4,即可得到结论.
【详解】
∵菱形ABCD中,∠D=135°,
∴∠BCD=45°,
∵BE⊥CD于E,FG⊥BC于G,
∴△BFG与△BEC是等腰直角三角形,
∵∠GCF=∠ECF,∠CGF=∠CEF=90°,
CF=CF,
∴△CGF≌△CEF(AAS),
∴FG=FE,CG=CE,
设BG=FG=EF=x,
∴BF=x,
∵△BFG的周长为4,
∴x+x+x=4,
∴x=4-2,
∴BE=2,
∴BC=BE=4,
∴菱形ABCD的面积=4×2=8,
故选:B.
考查了菱形的性质,等腰三角形的性质,求FG的长是本题的关键.
2、C
【解析】
根据三角形内角和定理求出∠B+∠C,根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B,同理可得,∠EAC=∠C,结合图形计算,得到答案.
【详解】
解:∠B+∠C=180°-∠BAC=68°,
∵AB的垂直平分线交BC于D,
∴DA=DB,
∴∠DAB=∠B,
∵AC的中垂线交BC于E,
∴EA=EC,
∴∠EAC=∠C,
∴∠DAE=∠BAC-(∠DAB+∠EAC)=112°-68°=44°,
故选:C.
本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
3、B
【解析】
根据分式的加减法法则计算即可得出正确选项.
【详解】
解:=.
故选:B.
本题主要考查了分式的加减,同分母分式相加减,分母不变,分子相加减.
4、B
【解析】
根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可
【详解】
把x=0代入方程得,解得a=±1.
∵原方程是一元二次方程,所以 ,所以,故
故答案为B
本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.
5、B
【解析】
由,,证出四边形是平行四边形,
A. ,根据邻边相等的平行四边形,可证四边形是菱形;
B. ,对角线相等的平行四边形是矩形,不能证四边形是菱形;
C. ,根据对角线互相垂直的平行四边形是菱形,可证四边形是菱形;
D. ,证,根据等角对等边可证,即可证得四边形是菱形.
【详解】
,,
四边形是平行四边形,
A. ,是菱形;
B. ,是矩形,不是菱形;
C. ,是菱形;
D. ,
是菱形;
故本题的答案是:B
本题考查了特殊四边形菱形的证明,平行四边形的证明,矩形的证明,注意对这些证明的理解,容易混淆,小心区别对比.
6、A
【解析】
根据中位数、众数、平均数和样本容量的定义对各选项进行判断.
【详解】
解:这组数据的中位数为8(吨),众数为8(吨),平均数=(1×4+2×5+8×8+6×12+2×15+1×1)=10(吨),样本容量为1.
故选:A.
本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了平均数和中位数.
7、D
【解析】
根据勾股定理的逆定理依次计算各项后即可解答.
【详解】
选项A,∵72+242=252,∴7,24,25能构成直角三角形;
选项B,∵42+52=()2,∴,4,5能构成直角三角形;
选项C,∵12+()2=()2,∴,1,能构成直角三角形;
选项D,∵402+502≠602,∴40,50,60不能构成直角三角形.
故选D.
本题考查了勾股定理的逆定理,熟练运用勾股定理的逆定理是解决问题的关键.
8、D
【解析】
先确定直线OA的解析式为y=-2x,然后观察函数图象得到当-2≤x≤-1时,y=kx+b的图象在x轴上方且在直线y=-2x的下方.
【详解】
解:直线OA的解析式为y=-2x,
当-2≤x≤-1时,0≤kx+b≤-2x.
故选:D.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据众数的定义进行求解即可得答案.
【详解】
解:这组数据中的众数是1,即出现次数最多的数据为:1,
故x=1,
故答案为1.
本题考查了众数的知识,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.
10、1
【解析】
根据x1,x2,x3,…xn的方差是1,可得出3x1,3x2,3x3,…,3xn的方差是1×32即可.
【详解】
∵数据:x1,x2,x3,…,xn的平均数是2,方差是1,
∴数据3x1,3x2,3x3,…,3xn的方差是1×1=1.
故答案为:1.
本题考查了方差,若在原来数据前乘以同一个数,方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.
11、x≥-1.
【解析】
根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.
【详解】
由题意得,2x+2≥0,
解得,x≥-1,
故答案为:x≥-1.
此题考查二次根式的有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.
12、 且
【解析】
根据被开方数是非负数且分母不能为零,可得答案.
【详解】
解:由题意,得
解得x>-3且.
故答案为:x>-3且.
本题考查函数自变量的取值范围,利用被开方数是非负数且分母不能为零得出不等式是解题关键.
13、2-x
【解析】
,
∵x≤2,
∴原式=2-x.
三、解答题(本大题共5个小题,共48分)
14、(1)5,5;(2)1500.
【解析】
(1)利用加权平均数求得平均数即可;将所有数据从大到小排列即可得到中位数;
(2)根据(1)中所求得出植树总数即可.
【详解】
(1)平均数=(棵),
∵共50人,
∴中位数是第25和26个数的平均数,
∴中位数=(5+5)(棵),
(2)3005=1500(棵),
∴该乡镇本次活动共植树1500棵.
此题考查加权平均数、中位数的确定、样本估计总体,正确理解题意即可计算解答.
15、见详解.
【解析】
结合正方形的性质利用AAS可证,由全等三角形对应边相等的性质易证结论.
【详解】
证明:四边形ABCD是正方形
在和中,
本题主要考查了全等三角形的判定与性质,灵活的利用正方形的性质及平行线的性质确定全等的条件是解题的关键.
16、14
【解析】
试题分析:构造矩形,用矩形的面积减去3个直角三角形的面积即可求得.
试题解析:如图,构造矩形,
, ,
,
,
.
17、C
【解析】
画树状图展示所有9种等可能的结果数,找出两人中至少有一个给“好评”的结果数,然后根据概率公式求解.
【详解】
画树状图为:
共有9种等可能的结果数,两人中至少有一个给“好评”的结果数为5,
所以两人中至少有一个给“好评”的概率=.
故选C.
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.
18、从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.
【解析】
设年平均增长率为x,根据:2016年投入资金×(1+增长率)2=2018年投入资金,列出方程求解可得.
【详解】
解:设该地投入异地安置资金的年平均增长率为x.
根据题意得:1280(1+x)2=1280+1600.
解得x1=0.5=50%,x2=-2.5(舍去),
答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.
本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、6
【解析】
因为在中
,
∴AB=2BC
又D为AB中点,
∴CD=AD=BD=BC=AB
又E,F分别为AC,AD的中点,
∴EF=CD,所以CD=2EF=6
故BC为6
本题主要考查三角形的基本概念和直角三角形。
20、150
【解析】
根据题意先得出AB=BC=BE,EC=BC=DC,并以此求出∠AEB 和∠DEC,进而利用∠AED=360°-∠AEB -∠DEC -∠BEC即可求出∠AED的度数.
【详解】
解:∵四边形ABCD是正方形,△EBC是等边三角形,
∴AB=BC=BE,EC=BC=DC, ∠ABE=∠DCE=90°-60°=30°,
∴∠AEB=∠EAB=(180°-30°)÷2=75°,
∴∠DEC=∠EDC=(180°-30°)÷2=75°,
∴∠AED=360°-∠AEB -∠DEC -∠BEC =360°-75°-75°-60°=150°.
故答案为:150°.
本题考查正方形的性质以及等腰、等边三角形的性质,熟练掌握相关的性质是解题的关键.
21、
【解析】
根据确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母即可得出答案.
【详解】
解:分式和的最简公分母是,
故答案为:.
本题考查了最简公分母的定义:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.
22、
【解析】
延长EF交CB于M,连接DM,根据正方形的性质得到AD=DC,∠A=∠BCD=90°,由折叠的性质得到∠DFE=∠DFM=90°,通过Rt△DFM≌Rt△DCM,于是得到MF=MC.由等腰三角形的性质得到∠MFC=∠MCF由余角的性质得到∠MFC=∠MBF,于是求得MF=MB,根据勾股定理即可得到结论.
【详解】
如图,
延长EF交CB于M,连接DM,
∵四边形ABCD是正方形,
∴AD=DC,∠A=∠BCD=90°,
∵将△ADE沿直线DE对折得到△DEF,
∴∠DFE=∠DFM=90°,
在Rt△DFM与Rt△DCM中,,
∴Rt△DFM≌Rt△DCM(HL),
∴MF=MC,
∴∠MFC=∠MCF,
∵∠MFC+∠BFM=90°,∠MCF+∠FBM=90°,
∴∠MFB=∠MBF,
∴MB=MC,
∴MF=MC=BM=,设AE=EF=x,
∵BE2+BM2=EM2,
即(1-x)2+()2=(x+)2,
解得:x=,
∴AE=,
故答案为:.
本题考查了翻折变换-折叠问题,正方形的性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.
23、2
【解析】
由∠ACB=90°,CD是斜边上的中线,求出AB=1,根据AB+AC+BC=14,求出AC+BC,根据勾股定理得出AC2+BC2=AB2=31推出AC•BC=14,根据SAC•BC即可求出答案.
【详解】
如图,∵∠ACB=90°,CD是斜边上的中线,∴AB=2CD=1.
∵AB+AC+BC=14,∴AC+BC=8,由勾股定理得:AC2+BC2=AB2=31,∴(AC+BC)2﹣2AC•BC=31,∴AC•BC=14,∴SAC•BC=2.
故答案为:2.
本题考查了对直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,能根据性质求出AC•BC的值是解答此题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)矩形,理由见解析;
【解析】
(1)根据平行四边形的性质得出BO=DO,AO=OC,求出OE=OF,根据全等三角形的判定定理推出即可;
(2)根先推出四边形EBFD是平行四边形,再根据矩形的判定得出即可.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴BO=DO,AO=OC,
∵AE=CF,
∴AO-AE=OC-CF,
即:OE=OF,
在△BOE和△DOF中,
∴△BOE≌△DOF(SAS);
(2)矩形,
证明:∵BO=DO,OE=OF,
∴四边形BEDF是平行四边形,
∵BD=EF,
∴平行四边形BEDF是矩形.
此题考查平行四边形的性质和判定,全等三角形的判定和矩形的判定,能灵活运用定理进行推理是解题的关键.
25、(1)m=-2;(2) m ≠2时,y是x的一次函数
【解析】
(1)根据正比例函数的定义:一般地,形如y=kx(k是常数,k ≠0)的函数,叫做正比例函数,即可求解;
(2)根据一次函数的定义:一般地,形如y=kx+b(k,b是常数,k ≠0)的函数,叫做一次函数,即可求解.
【详解】
(1)当m2-4=0且m-2≠0时,y是x的正比例函数,
解得m=-2;
(2)当m-2≠0时,即m ≠2时,y是x的一次函数 .
本题考查正比例函数的定义,一次函数的定义.
26、(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.
【解析】
(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;
(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.
【详解】
(1)设每行驶1千米纯用电的费用为x元,根据题意得:
=
解得:x=0.26
经检验,x=0.26是原分式方程的解,
答:每行驶1千米纯用电的费用为0.26元;
(2)从A地到B地油电混合行驶,用电行驶y千米,得:
0.26y+(﹣y)×(0.26+0.50)≤39
解得:y≥74,即至少用电行驶74千米.
题号
一
二
三
四
五
总分
得分
居民(户数)
1
2
8
6
2
1
月用水量(吨)
4
5
8
12
15
20
植树棵树
3
4
5
6
8
人数
8
15
12
7
8
2024-2025学年上海华亭学校九年级数学第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年上海华亭学校九年级数学第一学期开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江西省南昌市十学校数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年江西省南昌市十学校数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省洪泽县数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年江苏省洪泽县数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。