宁夏石嘴山市第十五中学2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,将长方形纸片ABCD折叠,使点B与点D重合,折痕为EF,已知AB=6cm,BC=18cm,则Rt△CDF的面积是( )
A.27cm2B.24cm2C.22cm2D.20cm2
2、(4分)如果,那么下列各式一定不成立的是( )
A.B.C.D.
3、(4分)如图,O既是AB的中点,又是CD的中点,并且AB⊥CD.连接AC、BC、AD、BD,则AC,BC,AD,BD这四条线段的大小关系是( )
A.全相等
B.互不相等
C.只有两条相等
D.不能确定
4、(4分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<1;②a>1;③当x<4时,y1<y2;④b<1.其中正确结论的个数是( )
A.4个B.3个C.2个D.1个
5、(4分)如图,中,,的平分线交于点,连接,若,则的度数为
A.B.C.D.
6、(4分)计算(ab2)2的结果是( )
A.a2b4B.ab4C.a2b2D.a4b2
7、(4分)小刚以400米/分的速度匀速骑车5分钟,在原地休息了6分钟,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是(横坐标表示小刚出发所用时间,纵坐标表示小刚离出发地的距离)( )
A.B.
C.D.
8、(4分)洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工
作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间函数关系的
图象大致为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)要使分式有意义,应满足的条件是__________
10、(4分)已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.
11、(4分)关于的方程有两个整数根,则整数____________.
12、(4分)如图,函数y=3x和y=kx+6的图象相交于点A(a,3),则不等式3x≤kx+6的解集为_____.
13、(4分)在平面直角坐标系中,一次函数(、为常数,)的图象如图所示,根据图象中的信息可求得关于的方程的解为____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平行四边形ABCD中,点E.F分别在AB、CD上,AE=CF,连接AF,BF,DE,CE,分别交于H、G.
求证:(1)四边形AECF是平行四边形.(2)EF与GH互相平分.
15、(8分)已知如图,在正方形中,为的中点,,平分并交于.求证:
16、(8分)如图,在△ABC中,AB=AC,点D,E分别是边AB,AC的中点,连接DE、BE,点F,G,H分别为BE,DE,BC的中点.
(1)求证:FG=FH;
(2)若∠A=90°,求证:FG⊥FH;
(3)若∠A=80°,求∠GFH的度数.
17、(10分)为进一步改善民生,增强广大人民群众的幸福感,自2016年以来,我县加大城市公园的建设,2016年县政府投入城市公园建设经费约2亿元到2018年投入城市公园建设经费约2.88亿元,假设这两年投入城市公园建设经费的年平均增长率相同.
(1)求这两年我县投入城市公园建设经费的年平均增长率;
(2)若我县城市公园建设经费的投入还将保持相同的年平均增长率,请你预算2019年我县城市公园建设经费约为多少亿元?
18、(10分)如图,在正方形ABCD中,对角线AC,BD相较于点O,的角平分线BF交CD于点E,交AC于点F
求证:;
若,求AB的值
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若关于x的分式方程有增根,则k的值为__________.
20、(4分)如图,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC,BC于点D,E两点,当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),给出以下个结论:①CD=BE;②四边形CDFE不可能是正方形;③△DFE是等腰直角三角形;④S四边形CDFE=S△ABC.上述结论中始终正确的有______.(填序号)
21、(4分)定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为 ________.
22、(4分)在矩形纸片ABCD中,AB=5,AD=13.如图所示,折叠纸片,使点A落在BC边上的A¢处,折痕为PQ,当点A¢在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A¢在BC边上可移动的最大距离为_________.
23、(4分)两个相似多边形的一组对应边分别为3cm和4.5cm,如果它们的面积之和为130cm1,那么较小的多边形的面积是_____cm1.
二、解答题(本大题共3个小题,共30分)
24、(8分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.
(1)请填写下表
(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;
(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.
25、(10分)如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:
(1)EA是∠QED的平分线;
(1)EF1=BE1+DF1.
26、(12分)已知:,,求的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
求Rt△CDF的面积,CD边是直角边,有CD=AB=6cm,只要求出边FC即可.由于点B与点D重合,所以有FD=BF=BC-FC=18-FC,利用勾股定理可求出FC了.
【详解】
解:设FC=x,Rt△CDF中,CD=6cm,FC=x,又折痕为EF,
∴FD=BF=BC-FC=18-FC=18-x,
Rt△CDF中,DF2=FC2+CD2,
即(18-x)2=x2+62,
解得x=8,
∴面积为
故选:B.
解决本题的关键是根据折叠及矩形的性质利用勾股定理求得CF的长度;易错点是得到DF与CF的长度和为18的关系.
2、C
【解析】
根据不等式的性质,可得答案.
【详解】
、两边都减,不等号的方向不变,正确,不符合选项;
、因为,所以,正确,不符合选项;
、因为,所以,错误,符合选项;
、因为,所以(),正确,不符合选项.
故选:.
本题考查了不等式的性质的应用,不等式的两边都加上或减去同一个数,不等号的方向不变;不等式的两边都乘以或除以同一个负数,不等号的方向要改变.
3、A
【解析】
根据已知条件可判断出是菱形,则AC,BC,AD,BD这四条线段的大小关系即可判断.
【详解】
∵O既是AB的中点,又是CD的中点,
∴ ,
∴是平行四边形.
∵AB⊥CD,
∴平行四边形是菱形,
∴ .
故选:A.
本题主要考查菱形的判定及性质,掌握菱形的判定及性质是解题的关键.
4、D
【解析】
根据一次函数的性质对①②④进行判断;当x<4时,根据两函数图象的位置对③进行判断.
【详解】
解:根据图象y1=kx+b经过第一、二、四象限,
∴k<1,b>1,
故①正确,④错误;
∵y2=x+a与y轴负半轴相交,
∴a<1,
故②错误;
当x<4时图象y1在y2的上方,所以y1>y2,故③错误.
所以正确的有①共1个.
故选D.
此题主要考查了一次函数,以及一次函数与不等式,根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.
5、D
【解析】
由平行四边形的对边相互平行和平行线的性质得到∠ABC=80°;然后由角平分线的性质求得∠EBC=∠ABC=40°;最后根据等腰三角形的性质解答.
【详解】
四边形是平行四边形,
,.
.
又,
.
是的平分线,
.
又,
.
.
故选.
考查了平行四边形的性质,此题利用了平行四边形的对边相互平行和平行四边形的对角相等的性质.
6、A
【解析】
根据积的乘方的运算法则计算即可得出答案.
【详解】
故选:A.
本题主要考查积的乘方,掌握积的乘方的运算法则是解题的关键.
7、C
【解析】
由题意结合函数图象的性质与实际意义,进行分析和判断.
【详解】
解:∵小刚在原地休息了6分钟,
∴排除A,
又∵小刚再休息后以500米/分的速度骑回出发地,可知小刚离出发地的距离越来越近,
∴排除B、D,只有C满足.
故选:C.
本题考查一次函数图象所代表的实际意义,学会判断横坐标和纵坐标所表示的实际含义以及运用数形结合思维分析是解题的关键.
8、D
【解析】
根据题意对浆洗一遍的三个阶段的洗衣机内的水量分析得到水量与时间的函数图象,然后即可选择:
每浆洗一遍,注水阶段,洗衣机内的水量从1开始逐渐增多;清洗阶段,洗衣机内的水量不变且保持一段时间;排水阶段,洗衣机内的水量开始减少,直至排空为1.纵观各选项,只有D选项图象符合.
故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
本题主要考查分式有意义的条件:分母不能为1.
【详解】
解:∵x-2≠1,
∴x≠2,
故答案是:x≠2.
本题考查的是分式有意义的条件,当分母不为1时,分式有意义.
10、﹣1
【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.
【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,
整理得k2+1k=0,解得k1=0,k2=﹣1,
因为k≠0,
所以k的值为﹣1.
故答案为:﹣1.
【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
11、
【解析】
先计算判别式得到∆=,根据方程有两个整数根确定∆必为完全平方数,由此得到整数k的值.
【详解】
由题意得∆=,
∵方程有两个整数根,
∴∆必为完全平方数,
而k是整数,
∴k-8=0,
∴k=8,
故答案为:8.
此题考查一元二次方程的根的判别式,完全平方公式,正确理解题意是解题的关键.
12、x≤1
【解析】
先利用正比例函数解析式确定点坐标,然后利用函数图象,写出直线在直线上方所对应的自变量的范围即可.
【详解】
解:把代入得,解得,则,
根据图象得,当时,.
故答案为:
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的集合.
13、x=-2
【解析】
首先根据图像中的信息,可得该一次函数图像经过点(-2,3)和点(0,1),代入即可求得函数解析式,方程即可得解.
【详解】
解:由已知条件,可得图像经过点(-2,3)和点(0,1),代入,得
解得
即方程为
解得
此题主要考查利用一次函数图像的信息求解析式,然后求解一元一次方程,熟练运用,即可解题.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
(1)根据四边形ABCD是平行四边形,由平行四边形的性质可得:,,
根据,利用平行四边形的判定定理可得:四边形AECF是平行四边形,
由得四边形AECF是平行四边形,根据平行四边形的性质可得:,
根据,,,可得:,,根据平行四边形的判定定理可得:四边形BFDE是平行四边形,再根据平行四边形的性质可得:,根据平行四边形的判定定理可得:四边形EGFH是平行四边形,由平行四边形的性质可得:
与GH互相平分.
【详解】
四边形ABCD是平行四边形,
,,
,
四边形AECF是平行四边形,
由得:四边形AECF是平行四边形,
,
,,,
,,
四边形BFDE是平行四边形,
,
四边形EGFH是平行四边形,
与GH互相平分.
本题主要考查平行四边形的判定定理和平行四边形的性质,解决本题的关键是要熟练掌握平行四边形的判定定理和平行四边形的性质.
15、见解析
【解析】
取DA的中点F,连接FM,根据正方形的性质可得DA=AB,∠A=∠ABC=∠CBE=90°,然后利用ASA即可证出△DFM≌△MBN,再根据全等三角形的性质即可得出结论.
【详解】
解:取DA的中点F,连接FM
∵四边形是正方形
∴DA=AB,∠A=∠ABC=∠CBE=90°
∴∠FDM+∠AMD=90°
∵
∴∠BMN+∠AMD=90°
∴∠FDM=∠BMN
∵点F、M分别是DA、AB的中点
∴DF=FA=DA=AB=AM=MB
∴△AFM为等腰直角三角形
∴∠AFM=45°
∴∠DFM=180°-∠AFM=135°
∵平分
∴∠CBN==45°
∴∠MBN=∠ABC+∠CBN=135°
∴∠DFM=∠MBN
在△DFM和△MBN中
∴△DFM≌△MBN
∴
此题考查的是正方形的性质和全等三角形的判定及性质,掌握正方形的性质和构造全等三角形的方法是解决此题的关键.
16、 (1)证明见解析;(2)证明见解析;(3)∠GFH=100°.
【解析】
(1)由中点性质及AB=AC,得到BD=EC,再由中位线性质证明FG∥BD,GF=BD,FH∥EC,FH=EC,从而得到FG=FH;
(2)由(1)FG∥BD,FH∥EC,再由∠A=90°,可证FG⊥FH;
(3)由(1)FG∥BD,∠A=80°,可求得∠FKC,再由FH∥EC,可求得∠GFH的度数.
【详解】
(1)∵AB=AC,点D,E分别是边AB,AC的中点
∴BD=EC
∵点F,G,H分别为BE,DE,BC的中点
∴FG∥BD,GF=BD
FH∥EC,FH=EC
∴FG=FH;
(2)由(1)FG∥BD
又∵∠A=90°
∴FG⊥AC
∵FH∥EC
∴FG⊥FH;
(3)延长FG交AC于点K,
∵FG∥BD,∠A=80°
∴∠FKC=∠A=80°
∵FH∥EC
∴∠GFH=180°﹣∠FKC=100°
本题是几何问题,考查了三角形中位线的有关性质,解答时应根据题意找到相应三角形的中位线.
17、(1)这两年我县投入城市公园建设经费的年平均增长率是0.2;(2)2019年我县城市公园建设经费约为3.456亿元.
【解析】
(1)设这两年我县投入城市公园建设经费的年平均增长率为x,根据题意,可以列出相应的一元二次方程,从而可求得年平均增长率;
(2)根据(1)中的结果可以计算出2019年我县城市公园建设经费约为多少亿元.
【详解】
(1)设这两年我县投入城市公园建设经费的年平均增长率为x,
2(1+x)2=2.88,
解得,x1=0.2,x2=﹣2.2(舍去),
答:这两年我县投入城市公园建设经费的年平均增长率是0.2;
(2)2.88(1+0.2)=3.456(亿元),
答:2019年我县城市公园建设经费约为3.456亿元.
本题考查了一元二次方程的应用---增长率问题;本题的关键是掌握增长率问题中的一般公式为a(1+x)n =b,其中n为共增长了几年,a为第一年的原始数据,b是增长后的数据,x是增长率.
18、(1)详见解析;(2).
【解析】
根据正方形的性质得到,由角平分线的定义得到,求得,于是得到结论;
如图作交BD于点首先证明是等腰直角三角形,推出,求出OB即可解决问题.
【详解】
证明:,BD是正方形的对角线,
,
平分,
;
,,
,
;
解解:如图,作交BD于点H.
四边形ABCD是正方形,
,,
,
,,
,
,,
平分,
,
,
,
.
本题考查正方形的性质,角平分线的定义,勾股定理,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、或
【解析】
分式方程去分母转化为整式方程,由分式方程有增根,得到最简公分母为0求出的值,代入整式方程求出的值即可.
【详解】
解:
去分母得:,
整理得:
由分式方程有增根,得到,
解得:或,
把代入整式方程得:;
把代入整式方程得:,
则的值为或.
故答案为:或
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
20、①③④
【解析】
首先连接CF,由等腰直角三角形的性质可得:,则证得∠DCF=∠B,∠DFC=∠EFB,然后可证得:△DCF≌△EBF,由全等三角形的性质可得CD=BE,DF=EF,也可证得S四边形CDFE=S△ABC.问题得解.
【详解】
解:连接CF,
∵AC=BC,∠ACB=90°,点F是AB中点,
∴∠DCF=∠B=45°,
∵∠DFE=90°,
∴∠DFC+∠CFE=∠CFE+∠EFB=90°,
∴∠DFC=∠EFB,
∴△DCF≌△EBF,
∴CD=BE,故①正确;
∴DF=EF,
∴△DFE是等腰直角三角形,故③正确;
∴S△DCF=S△BEF,
∴S四边形CDFE=S△CDF+S△CEF=S△EBF+S△CEF=S△CBF=S△ABC.,故④正确.
若EF⊥BC时,则可得:四边形CDFE是矩形,
∵DF=EF,
∴四边形CDFE是正方形,故②错误.
∴结论中始终正确的有①③④.
故答案为:①③④.
此题考查了全等三角形的判定与性质,等腰直角三角形的性质,正方形的判定等知识.题目综合性很强,但难度不大,注意数形结合思想的应用.
21、x>﹣1
【解析】
解:3⊕x<13,
3(3-x)+1<13,
解得:x>-1.
故答案为:x>﹣1
本题考查一元一次不等式的应用,正确理解题意进行计算是本题的解题关键.
22、1
【解析】
如图1,当点D与点Q重合时,根据翻折对称性可得
A′D=AD=13,
在Rt△A′CD中,A′D2=A′C2+CD2,
即132=(13-A′B)2+52,
解得A′B=1,
如图2,当点P与点B重合时,根据翻折对称性可得A′B=AB=5,
∵5-1=1,
∴点A′在BC边上可移动的最大距离为1.
23、2
【解析】
试题分析:利用相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方可得.
解:两个相似多边形的一组对应边分别为3cm和4.5cm,
则相似比是3:4.5=1:3,
面积的比等于相似比的平方,即面积的比是4:9,
因而可以设较小的多边形的面积是4x(cm1),
则较大的是9x(cm1),
根据面积的和是130(cm1),
得到4x+9x=130,
解得:x=10,
则较小的多边形的面积是2cm1.
故答案为2.
二、解答题(本大题共3个小题,共30分)
24、(1)x﹣60、300﹣x、260﹣x;(2)w=10x+10200(60≤x≤260);(3)m的取值范围是0<m≤1.
【解析】
分析:(1)根据题意可以将表格中的空缺数据补充完整;
(2)根据题意可以求得w与x的函数关系式,并写出x的取值范围;
(3)根据题意,利用分类讨论的数学思想可以解答本题.
详解:(1)∵D市运往B市x吨,
∴D市运往A市(260﹣x)吨,C市运往B市(300﹣x)吨,C市运往A市200﹣(260﹣x)=(x﹣60)吨,
故答案为:x﹣60、300﹣x、260﹣x;
(2)由题意可得,
w=20(x﹣60)+25(300﹣x)+15(260﹣x)+30x=10x+10200,
∴w=10x+10200(60≤x≤260);
(3)由题意可得,
w=10x+10200﹣mx=(10﹣m)x+10200,
当0<m<10时,
x=60时,w取得最小值,此时w=(10﹣m)×60+10200≥10320,
解得,0<m≤1,
当m>10时,
x=260时,w取得最小值,此时,w=(10﹣m)×260+10200≥10320,
解得,m≤,
∵<10,
∴m>10这种情况不符合题意,
由上可得,m的取值范围是0<m≤1.
点睛:本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.
25、详见解析.
【解析】
(1)、直接利用旋转的性质得出△AQE≌△AFE(SAS),进而得出∠AEQ=∠AEF,即可得出答案;
(1)、利用(1)中所求,再结合勾股定理得出答案.
【详解】
(1)、∵将△ADF绕点A顺时针旋转90°后,得到△ABQ, ∴QB=DF,AQ=AF,∠ABQ=∠ADF=45°,
∴△AQE≌△AFE(SAS), ∴∠AEQ=∠AEF, ∴EA是∠QED的平分线;
(1)、由(1)得△AQE≌△AFE, ∴QE=EF, 在Rt△QBE中,
QB1+BE1=QE1, 则EF1=BE1+DF1.
考点:(1)、旋转的性质;(1)、正方形的性质.
26、3
【解析】
直接将代入求值比较麻烦,因此,可将原式化为含有的式子,再计算出 的值代入即可.
【详解】
解:∵,,∴,.
∴原式.
本题考查了乘法公式,灵活应用乘法公式将整式变形是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
A(吨)
B(吨)
合计(吨)
C
240
D
x
260
总计(吨)
200
300
500
2025届重庆清化中学九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份2025届重庆清化中学九年级数学第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届宁夏吴忠市红寺堡二中学数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2025届宁夏吴忠市红寺堡二中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届宁夏石嘴山市平罗县数学九年级第一学期开学复习检测模拟试题【含答案】: 这是一份2025届宁夏石嘴山市平罗县数学九年级第一学期开学复习检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。