宁夏大附中2025届九年级数学第一学期开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有( )
A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<0
2、(4分)甲,乙,丙,丁四位跨栏运动员在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲,乙,丙,丁成绩的方差分别是0.11,0.03,0.05,0.02,则当天这四位运动员“110米跨栏”训练成绩最稳定的是( )
A.甲B.乙C.丙D.丁
3、(4分)小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为( )
A.B.C.D.
4、(4分)下面四个式子中,分式为( )
A.B.C.D.
5、(4分)下列函数的图象经过,且随的增大而减小的是( )
A.B.C.D.
6、(4分)如图,平行四边形ABCD的对角线AC,BD交于点O,已知AD=16,BD=24,AC=12,则△OBC周长为( )
A.26B.34C.40D.52
7、(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是( )
A.B.C.D.2
8、(4分)已知关于x的不等式组的整数解共有2个,则整数a的取值是( )
A.﹣2B.﹣1C.0D.1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是________分.
10、(4分)某商场利用“五一”开展促销活动:一次性购买某品牌服装件,每件仅售元,如果超过件,则超过部分可享受折优惠,顾客所付款(元)与所购服装件之间的函数解析式为__________.
11、(4分)已知一次函数y=kx+b(k≠0)的图象经过点(0,1),且y随x的增大而增大,请你写出一个符合上述条件的函数式_____.(答案不唯一)
12、(4分)如图,菱形ABCD的周长为16,若,E是AB的中点,则点E的坐标为_____________.
13、(4分)当x=______时,分式的值是1.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在四边形ABCD中,AD⊥BD,BC=4,CD=3,AB=13,AD=12,求证:∠C=90°.
15、(8分)先化简再求值,其中x=-1.
16、(8分)如图,在平面直角坐标系中,菱形的顶点与原点重合,点在轴的正半轴上,点在函数的图象上,点的坐标为.
(1)求的值.
(2)将点沿轴正方向平移得到点,当点在函数的图象上时,求的长.
17、(10分)如图,在正方形中,对角线上有一点,连结,作交于点.过点作直线的对称点,连接
求证:
求证:四边形为平行四边形;
若有可能成为菱形吗?如果可能,求此时长;如果不可能,请说明理由.
18、(10分)如图,已知A(﹣4,n),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.、(1)求△AOB的面积;(2)求不等式kx+b﹣<0的解集(请直接写出答案).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图所示,线段EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F。已知AB=4,BC=5,EF=3,那么四边形EFCD的周长是_____.
20、(4分)若关于x的分式方程的解为非负数,则a的取值范围是_____.
21、(4分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4……的斜边OA1,OA2,OA3,OA4……都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=……=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3OA3=OC4……,则依此规律,点A2018的纵坐标为___.
22、(4分)计算:(2+)(2-)=_______.
23、(4分)如图,在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为___.
二、解答题(本大题共3个小题,共30分)
24、(8分)某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同.
(1)a=__,=____;
(2)①分别计算甲、乙成绩的方差.
②请你从平均数和方差的角度分析,谁将被选中.
25、(10分)如图,将--张矩形纸片沿着对角线向上折叠,顶点落到点处,交于点作交于点连接交于点.
(1)判断四边形的形状,并说明理由,
(2)若,求的长,
26、(12分)解不等式,并将解集表示在数轴上.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
∵A,B是不同象限的点,而正比例函数的图象要不在一、三象限,要不在二、四象限,
∴由点A与点B的横纵坐标可以知:
点A与点B在一、三象限时:横纵坐标的符号应一致,显然不可能;
点A与点B在二、四象限:点B在二象限得n<0,点A在四象限得m<0.
故选D.
2、D
【解析】
根据方差的定义,方差越小数据越稳定.
【详解】
∵0.02<0.03<0.05<0.11,
∴丁的成绩的方差最小,
∴当天这四位运动员“110米跨栏”的训练成绩最稳定的是丁。
故选:D.
此题考查方差,解题关键在于掌握其定义
3、B
【解析】
试题解析:小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:
小强
小华 石头 剪刀 布
石头 (石头,石头) (石头,剪刀) (石头,布)
剪刀 (剪刀,石头) (剪刀,剪刀) (剪刀,布)
布 (布,石头) (布,剪刀) (布,布)
∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).
∴小明和小颖平局的概率为:.
故选B.
考点:概率公式.
4、B
【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
【详解】
A.的分母中不含有字母,因此它是整式,而不是分式,故本选项错误;
B.分母中含有字母,因此它们是分式,故本选项正确;
C.是整式,而不是分式,故本选项错误;
D.的分母中不含有字母,因此它们是整式,而不是分式.故本选项错误.
故选B.
本题考查了分式的定义,熟知一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式是解答此题的关键.
5、D
【解析】
根据一次函数的性质,k<0,y随x的增大而减小,找出各选项中k值小于0的选项即可.再把点代入,符合的函数解析式即为答案.
【详解】
A. ,当x=0时,y=0,图象不经过,不符合题意;
B. ,,当x=0时,y=-1,图象不经过,不符合题意;
C. ,k=2>0,随的增大而增大,不符合题意;
D. y=-x+1,当x=0时,y=1,图象经过,k=-1<0,随的增大而减小
本题考查了一次函数图像的性质,判断函数图像是否经过点,把点的x坐标代入求y坐标,如果y值相等则函数图像经过点,如不相等则不经过,当k>, y随的增大而增大,,当k<0,随的增大而减小.
6、B
【解析】
由平行四边形的性质得出OA=OC=6,OB=OD=12,BC=AD=16,即可求出△OBC的周长.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC=6,OB=OD=12,BC=AD=16,
∴△OBC的周长=OB+OC+AD=6+12+16=1.
故选:B.
点睛:本题主要考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.
7、A
【解析】
连接AC、CF,如图,根据正方形的性质得∠ACD=45°,∠FCG=45°,AC=,CF=3,则∠ACF=90°,再利用勾股定理计算出AF=2,然后根据直角三角形斜边上的中线求CH的长.
【详解】
连接AC、CF,如图,
∵四边形ABCD和四边形CEFG都是正方形,
∴∠ACD=45°,FCG=45°,AC=BC=,CF=CE=3,
∴∠ACF=45°+45°=90°,
在Rt△ACF中,AF=,
∵H是AF的中点,
∴CH=AF= .
故选A.
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.两条对角线将正方形分成四个全等的等腰直角三角形.也考查了直角三角形斜边上的中线性质及勾股定理.
8、C
【解析】
分析:先用a表示出不等式组的整数解,再根据不等式组的整数解有2个可得出a的取值范围.
解:,由①得,x≥a,由②得,x≤1,故不等式组的解集为:a≤x≤1,
∵不等式的整数解有2个,
∴其整数解为:1,1,
∵a为整数,
∴a=1.
故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、79
【解析】
解:本学期数学总评分=70×30%+80×30%+85×40%=79(分)
故答案为79
10、
【解析】
因为所购买的件数x≥3,所以顾客所付款y分成两部分,一部分是3×80=240,另一部分是(x-3)×80×0.8,让它们相加即可.
【详解】
解:∵x≥3,
∴y=3×80+(x-3)×80×0.8=64x+48(x≥3).
故答案是:.
此题主要考查利用一次函数解决实际问题,找到所求量的等量关系是解决问题的关键.
11、y=x+1
【解析】
∵一次函数y=kx+b(k≠0)的图象经过点(0,1),且y随x的增大而增大,∴k>0,图象经过点(0,1),∴b=1,只要符合上述条件即可.
【详解】
解:只要k>0,b>0且过点(0,1)即可,由题意可得,k>0,b=1,符合上述条件的函数式,例如y=x+1(答案不唯一)
一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
12、
【解析】
首先求出AB的长,进而得出EO的长,再利用锐角三角函数关系求出E点横纵坐标即可.
解:如图所示,过E作EM⊥AC,
已知四边形ABCD是菱形,且周长为16,∠BAD=60°,根据菱形的性质可得AB=CD-BC=AD=4,AC⊥DB,∠BAO=∠BAD=30°,又因E是AB的中点,根据直角三角形中,斜边的中线等于斜边的一半可得EO=EA=EB=AB=2,根据等腰三角形的性质可得∠BAO=∠EOA=30°,由直角三角形中,30°的锐角所对的直角边等于斜边的一半可得EM=OE=1,在Rt△OME中,由勾股定理可得OM=,所以点E的坐标为(,1),
故选B.
“点睛”此题主要考查了菱形的性质以及锐角三角函数关系应用,根据已知得出EO的长以及∠EOA=∠EAO=30°是解题的关键.
13、1
【解析】
直接利用分式的值为零则分子为零进而得出答案.
【详解】
∵分式的值是1,
∴x=1.
故答案为:1.
此题主要考查了分式的值为零的条件,正确把握分式的性质是解题关键.
三、解答题(本大题共5个小题,共48分)
14、证明见解析.
【解析】
先根据勾股定理求出BD的长度,然后根据勾股定理的逆定理,即可证明CD⊥BC.
【详解】
证明:∵AD⊥BD,AB=13,AD=12,
∴BD=1.
又∵BC=4,CD=3,
∴CD2+BC2=BD2.
∴∠C=90°
本题考查了勾股定理及其逆定理,注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.
15、.
【解析】
原式
.
当时,原式
16、 (1)k=12;(2)DD′=.
【解析】
(1)首先延长AD交x轴于点F,由点D坐标可得出OD的长,由菱形的性质,即可得出点A坐标,进而得出k;
(2)由(1)可得知反比例函数解析式,由点D的坐标可知点D′的纵坐标,代入函数解析式即可得出点D′的横坐标,即可得解.
【详解】
(1) 延长AD交x轴于点F,如图所示,
∵点D的坐标为(4,1),
∴OF=4,DF=1.
∴OD=2.
∴AD=2.
∴点A坐标为(4,8).
∴k=xy=4×8=12.
∴k=12.
(2) 由平移得点D′的纵坐标为1.
由(1)可知函数解析式为,
∵点D′在的图象上,
∴1=.
解得:x=.
∴DD′=﹣4=.
此题主要考查菱形的性质和反比例函数的性质,熟练运用,即可解题.
17、(1)详见解析;(2)详见解析;(3)
【解析】
(1)利用对称的性质得出,,再根据正方形的性质得出,,从而可证明结论;
(2)根据点与点关于直线对称,推出,再根据正方形的性质得出,从而推出,再利用(1)中结论,得出,可得出,推出,继而证明结论;
(3)过点作于点于点,根据已知条件结合示意图可证明,得到,又因为,继而得出,当四边形为菱形时,为等边三角形,从而得出,设, 则,,再结合AB=4求x的值,进一步计算即可得出答案.
【详解】
解:证明:点与点关于直线对称,
,,
四边形为正方形,
,
;
点与点关于直线对称,
,
,
,
,
∴∠GEC=∠BCE=∠CGE=45°,
,
,
由得,
,
,
,
四边形为平行四边形;
如图所示,过点作于点于点,连接DE,
,
,
,
,
,
,
,
四边形为正方形,
关于对称,
,
,
当四边形为菱形时,,
为等边三角形,
,
设,则,
,
,
四边形为正方形,,
,
,
.
本题是一道关于正方形的综合题目,涉及的知识点有正方形的性质、平行线的判定定理、平行四边形的判定定理、菱形的性质、等腰三角形的性质、点关于直线对称的性质、全等三角形的判定及性质等.
18、(1);(2)﹣4<x<0或x>1
【解析】
(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;
(2)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.
【详解】
解:(1)∵反比例函数y=(m≠0)过点B(1,﹣4),
∴m=1×(﹣4)=﹣4, ∴y=﹣,
将x=﹣4,y=n代入反比例解析式得:n=1,
∴A(﹣4,1),
∴将A与B坐标代入一次函数解析式得:k+b=-4,-4k+b=1,
解得:k=-1,b=-3, ∴y=﹣x﹣3;
在直线y=﹣x﹣3中,当y=0时,x=﹣3,
∴C(﹣3,0),即OC=3,
∴S△AOB=S△AOC+S△COB=(3×1+3×4)=;
(2)不等式kx+b﹣<0的解集是﹣4<x<0或x>1.
本题考查待定系数法求一次函数解析式;待定系数法求反比例函数解析式;反比例函数与图形的面积计算;反比例函数与一次函数的结合交点问题求x的范围,学生们熟练掌握解析一次函数和反比例函数表达式的方法同时观察图象是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据平行四边形的性质,得△AOE≌△COF.根据全等三角形的性质,得OF=OE,CF=AE.再根据平行四边形的对边相等,得CD=AB,AD=BC,故FC+ED=AE+ED=AD,根据所推出相等关系,可求四边形EFCD的周长.
【详解】
解:∵四边形ABCD为平行四边形,
∴AO=OC,AD∥BC,
∴∠EAO=∠FCO,
在△AOE和△COF中,
,
∴△AOE≌△COF,
∴OF=OE=1.5,CF=AE,
根据平行四边形的对边相等,得
CD=AB=4,AD=BC=5,
故四边形EFCD的周长=EF+FC+ED+CD=OE+OF+AE+ED+CD=1.5+1.5+5+4=1.
故答案为:1.
本题考查了平行四边形的性质,解题的关键是能够根据平行四边形的性质发现全等三角形,再根据全等三角形的性质求得相关线段间的关系.
20、且
【解析】
分式方程去分母得:2(2x-a)=x-2,
去括号移项合并得:3x=2a-2,
解得:,
∵分式方程的解为非负数,
∴ 且 ,
解得:a≥1 且a≠4 .
21、3×()1
【解析】
根据含30度的直角三角形三边的关系得OA2=OC2=3×;
OA3=OC3=3×()2;OA4=OC4=3×()3,于是可得到
OA2018=3×()1.
【详解】
∵∠A2OC2=30°,OA1=OC2=3,
∴;
∵,
∴;
∵,
∴,
∴,
而2018=4×504+2,
∴点A2018在y轴的正半轴上,
∴点A2018的纵坐标为:.
故答案为:.
本题考查的知识点是规律型和点的坐标,解题关键是利用发现的规律进行解答.
22、1
【解析】
根据实数的运算法则,利用平方差公式计算即可得答案.
【详解】
(2+)(2-)
=22-()2
=4-3
=1.
故答案为:1
本题考查实数的运算,熟练掌握运算法则并灵活运用平方差公式是解题关键.
23、1.
【解析】
由图示知:MN=AM+BN﹣AB,所以结合已知条件,根据勾股定理求出AC的长即可解答.
【详解】
解:在Rt△ABC中,根据勾股定理,AB==13,
又∵AC=12,BC=5,AM=AC,BN=BC,
∴AM=12,BN=5,
∴MN=AM+BN﹣AB=12+5﹣13=1.
故答案是:1.
本题考查勾股定理,解题的关键是结合图形得出:MN=AM+BN﹣AB.
二、解答题(本大题共3个小题,共30分)
24、(1)4,6;(2)乙
【解析】
(1)根据总成绩相同可求得a;
(2)根据方差公式,分别求两者方差.即s²=[(x1-)²+(x2-)²+...+(xn-)²];因为两人成绩的平均水平(平均数)相同,所以从方差得出乙的成绩比甲稳定.
【详解】
(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a=30﹣7﹣7﹣5﹣7=4, ═30÷5=6;
(2)甲的方差为:[(9﹣6)2+(4﹣6)2+(7﹣6)2+(4﹣6)2+(6﹣6)2]=3.6.
乙的方差为: [(7﹣6)2+(5﹣6)2+(7﹣6)2+(4﹣6)2+(7﹣6)2]=1.6.
②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中;
本题考核知识点:平均数,方差.解题关键点:理解平均数和方差的意义.
25、(1)四边形为菱形,见解析;(2)
【解析】
(1)根据已知矩形性质证明四边形为平行四边形,再根据折叠的性质证明,得出即可得出结论;
(2)根据折叠特性设未知边,构造勾股定理列方程求解.
【详解】
解: 四边形为菱形;
理由如下:
四边形为矩形,
四边形为平行四边形
由折叠的性质,则
四边形为菱形,
,
.
由得
设.
在,
解得:,
,
.
此题考查了矩形的性质、菱形的判定和性质、勾股定理解答,考查了翻折不变性,综合性较强,是一道好题.
26、,见解析
【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解:解不等式3x<x+6,得:x<3,
解不等式1-x≤4x+11,得:x≥-2,
则不等式组的解集为-2≤x<3,
将不等式组的解集表示在数轴上如下:
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
题号
一
二
三
四
五
总分
得分
第1次
第2次
第3次
第4次
第5次
甲成绩
9
4
7
4
6
乙成绩
7
5
7
a
7
湖北省武汉大附中2024年九年级数学第一学期开学复习检测模拟试题【含答案】: 这是一份湖北省武汉大附中2024年九年级数学第一学期开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届云南省云南大附中(一二一校区)数学九上开学达标检测模拟试题【含答案】: 这是一份2025届云南省云南大附中(一二一校区)数学九上开学达标检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届河南大附中数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2025届河南大附中数学九年级第一学期开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。