|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年宁夏石嘴山市第三中学九上数学开学联考模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年宁夏石嘴山市第三中学九上数学开学联考模拟试题【含答案】01
    2024-2025学年宁夏石嘴山市第三中学九上数学开学联考模拟试题【含答案】02
    2024-2025学年宁夏石嘴山市第三中学九上数学开学联考模拟试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年宁夏石嘴山市第三中学九上数学开学联考模拟试题【含答案】

    展开
    这是一份2024-2025学年宁夏石嘴山市第三中学九上数学开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图所示,函数和的图象相交于(–1,1),(2,2)两点.当时,x的取值范围是( )
    A.x<–1B.x<–1或x>2C.x>2D.–12、(4分)如图,矩形的面积为,反比例函数的图象过点,则的值为( )
    A.B.C.D.
    3、(4分)如图,将长方形纸片ABCD折叠,使点B与点D重合,折痕为EF,已知AB=6cm,BC=18cm,则Rt△CDF的面积是( )
    A.27cm2B.24cm2C.22cm2D.20cm2
    4、(4分)若分式的值为0,则的取值为( )
    A.B.1C.D.
    5、(4分)下列由一个正方形和两个相同的等腰直角三角形组成的图形中,为中心对称图形的是( )
    A.B.
    C.D.
    6、(4分)如图,在中,=55°,,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,作直线,交于点,连接,则的度数为( )
    A.B.C.D.
    7、(4分)方程x2-2x-5=0的左边配成一个完全平方后,所得的方程是()
    A.B.
    C.D.
    8、(4分)若平行四边形中两个内角的度数比为1:2,则其中较小的内角是( )。
    A.60°B.90°C.120°D.45°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,菱形中,垂直平分,垂足为,.那么菱形的对角线的长是_____.
    10、(4分)将一根长为15cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是_____.
    11、(4分)不等式的正整数解的和______;
    12、(4分)如图,中,,,点为边上一动点(不与点、重合),当为等腰三角形时,的度数是________.
    13、(4分)如图,将矩形绕点顺时针旋转度,得到矩形.若,则此时的值是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某河道A,B两个码头之间有客轮和货轮通行一天,客轮从A码头匀速行驶到B码头,同时货轮从
    B码头出发,运送一批建材匀速行驶到A码头两船距B码头的距离千米与行驶时间分之间的函数关系
    如图所示请根据图象解决下列问题:
    分别求客轮和货轮距B码头的距离千米、千米与分之间的函数关系式;
    求点M的坐标,并写出该点坐标表示的实际意义.
    15、(8分)如图,在中,,CD平分,,,E,F是垂足,那么四边形CEDF是正方形吗?说出理由.
    16、(8分)如图,已知菱形ABCD中,∠BAD=60°,点E、F分别是AB、AD上两个动点,若AE=DF,连接BF与DE相交于点G,连接CG,与BD相交于H.
    (1)求∠BGE的大小;(2)求证:GC平分∠BGD.
    17、(10分) “母亲节”前夕,某花店用3000元购进了第一批盒装花,上市后很快售完,接着又用4000元购进第二批盒装花.已知第二批所购花的进价比第一批每盒少3元,且数量是第一批盒数的1.5倍.问第一批盒装花每盒的进价是多少元?
    18、(10分)已知四边形ABCD和四边形CEFG都是正方形,且AB>CE
    (1) 如图1,连接BG、DE,求证:BG=DE
    (2) 如图2,如果正方形CEFG绕点C旋转到某一位置恰好使得CG∥BD,BG=BD
    ① 求∠BDE的度数
    ② 若正方形ABCD的边长是,请直接写出正方形CEFG的边长____________
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.
    20、(4分)已知等腰三角形有两条边分别是3和7,则这个三角形的周长是_______.
    21、(4分)请写出一个图形经过一、三象限的正比例函数的解析式 .
    22、(4分)已知四边形ABCD为菱形,∠BAD=60°,E为AD中点,AB=6cm,P为AC上任一点.求PE+PD的最小值是_______
    23、(4分)正方形按如图所示的方式放置,点.和. 分别在直线和x轴上,已知点,则Bn的坐标是____________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某通讯公司推出①、②两种收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.
    (1)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;
    (2)何时两种收费方式费用相等?
    25、(10分)已知正方形的边长为4,、分别为直线、上两点.
    (1)如图1,点在上,点在上,,求证:.
    (2)如图2,点为延长线上一点,作交的延长线于,作于,求的长.
    (3)如图3,点在的延长线上,,点在上,,直线交于,连接,设的面积为,直接写出与的函数关系式.
    26、(12分)如图,在平行四边形中,点,分别在边,的延长线上,且,分别与,交于点,.
    求证:.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    试题解析:当x≥0时,y1=x,又,
    ∵两直线的交点为(1,1),
    ∴当x<0时,y1=-x,又,
    ∵两直线的交点为(-1,1),
    由图象可知:当y1>y1时x的取值范围为:x<-1或x>1.
    故选B.
    2、B
    【解析】
    由于点A是反比例函数上一点,矩形ABOC的面积,再结合图象经过第二象限,则k的值可求出.
    【详解】
    由题意得: ,又双曲线位于第二象限,则,
    所以B选项是正确的.
    本题主要考查反比例函数y=kx中k几何意义,这里体现了数形结合的数形,关键在于理解k的几何意义.
    3、B
    【解析】
    求Rt△CDF的面积,CD边是直角边,有CD=AB=6cm,只要求出边FC即可.由于点B与点D重合,所以有FD=BF=BC-FC=18-FC,利用勾股定理可求出FC了.
    【详解】
    解:设FC=x,Rt△CDF中,CD=6cm,FC=x,又折痕为EF,
    ∴FD=BF=BC-FC=18-FC=18-x,
    Rt△CDF中,DF2=FC2+CD2,
    即(18-x)2=x2+62,
    解得x=8,
    ∴面积为
    故选:B.
    解决本题的关键是根据折叠及矩形的性质利用勾股定理求得CF的长度;易错点是得到DF与CF的长度和为18的关系.
    4、A
    【解析】
    根据分式的值为0的条件列式求解即可.
    【详解】
    根据题意得,x+1=0且x−1≠0,
    解得x=−1.
    故选A
    此题考查分式的值为零的条件,难度不大
    5、C
    【解析】
    根据中心对称图形的定义:平面内,如果把一个图形绕某一点旋转180后能与原图形重合,这个图形就叫做中心对称图形,即可判断.
    【详解】
    解:根据中心对称图形的定义,
    A.不是中心对称图形;
    B.不是中心对称图形;
    C.是中心对称图形,它的对称中心是正方形对角线的交点;
    D.不是中心对称图形;
    故选C.
    本题考查中心对称图形的识别,熟记中心对称图形的定义是解题的关键.
    6、A
    【解析】
    根据内角和定理求得∠BAC=95°,由中垂线性质知DA=DC,即∠DAC=∠C=30°,从而得出答案.
    【详解】
    在△ABC中,∵∠B=55°,∠C=30°,
    ∴∠BAC=180°−∠B−∠C=95°,
    由作图可知MN为AC的中垂线,
    ∴DA=DC,
    ∴∠DAC=∠C=30°,
    ∴∠BAD=∠BAC−∠DAC=65°,
    故选:A.
    此题考查线段垂直平分线的性质,作图—基本作图,解题关键在于求出∠BAC=95°.
    7、B
    【解析】
    把常数项-5移项后,应该在左右两边同时加上一次项系数-2的一半的平方.
    【详解】
    解:把方程x2-2x-5=0的常数项移到等号的右边,得到x2-2x=5,
    方程两边同时加上一次项系数一半的平方,得到x2-2x+(-1)2=5+(-1)2,
    配方得(x-1)2=1.
    故选:B.
    本题考查配方法解一元二次方程.配方法的一般步骤:
    (1)把常数项移到等号的右边;
    (2)把二次项的系数化为1;
    (3)等式两边同时加上一次项系数一半的平方.
    选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
    8、A
    【解析】
    首先设平行四边形中两个内角的度数分别是x°,2x°,由平行四边形的邻角互补,即可得方程x+2x=180,继而求得答案.
    【详解】
    设平行四边形中两个内角的度数分别是x°,2x°,
    则x+2x=180,
    解得:x=60,
    ∴其中较小的内角是:60°.
    故选A.
    此题考查平行四边形的性质,解题关键在于利用平行四边形的邻角互补.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    由垂直平分可得,再由菱形的性质得出,根据勾股定理求出,即可得出.
    【详解】
    解:垂直平分,AB=2cm,
    ∴=2cm,
    在菱形ABCD中,,,,



    故答案为:.
    本题考查了垂直平分线的性质、菱形的性质、勾股定理的运用;熟练掌握菱形的性质,运用勾股定理求出是解决问题的关键.
    10、2cm≤h≤3cm
    【解析】
    解:根据直角三角形的勾股定理可知筷子最长在水里面的长度为13cm,最短为12cm,
    则筷子露在外面部分的取值范围为:.
    故答案为:2cm≤h≤3cm
    本题主要考查的就是直角三角形的勾股定理的实际应用问题.在解决“竹竿过门”、立体图形中最大值的问题时,我们一般都会采用勾股定理来进行说明,从而得出答案.我们在解决在几何体中求最短距离的时候,我们一般也是将立体图形转化为平面图形,然后利用勾股定理来进行求解.
    11、3.
    【解析】
    先解出一元一次不等式,然后选取正整数解,再求和即可.
    【详解】
    解:解得;x<3,;则正整数解有2和1;
    所以正整数解的和为3;故答案为3.
    本题考查了解一元一次不等式组和正整数的概念,其关键在于选取正整数解.
    12、或
    【解析】
    根据AB=AC,∠A=40°,得到∠ABC=∠C=70°,然后分当CD=CB时和当BD=BC时两种情况求得∠ABD的度数即可.
    【详解】
    解:∵AB=AC,∠A=40°,
    ∴∠ABC=∠C=70°,
    当CD=CB时,
    ∠CBD=∠CDB=(180°-70°) ÷2=55°,
    此时∠ABD=70°-55°=15°;
    当BD=BC时,
    ∠BDC=∠BCD=70°,
    ∴∠DBC=180°-70°-70°=40°,
    ∴∠ABD=70°-40°=30°,
    故答案为:15°或30°.
    本题考查了等腰三角形的性质,解题的关键是能够分类讨论,难度不是很大,是常考的题目之一.
    13、60°或300°
    【解析】
    由“SAS”可证△DCG≌△ABG,可得CG=BG,由旋转的性质可得BG=BC,可得△BCG是等边三角形,即可求解.
    【详解】
    解:如图,连接,
    ∵四边形ABCD是矩形,
    ∴CD=AB,∠DAB=∠ADC=90°,
    ∵DG=AG,
    ∴∠ADG=∠DAG,
    ∴∠CDG=∠GAB,且CD=AB,DG=AG,
    ∴△DCG≌△ABG(SAS),
    ∴CG=BG,
    ∵将矩形ABCD绕点B顺时针旋转α度(0°<α<360°),得到矩形BEFG,
    ∴BC=BG,∠CBG=α,
    ∴BC=BG=CG,
    ∴△BCG是等边三角形,
    ∴∠CBG=α=60°,
    同理当G点在AD的左侧时,
    △BCG仍是等边三角形,
    Α=300°
    故答案为60°或300°.
    本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,证明△BCG是等边三角形是本题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1) , ;(2) 两船同时出发经24分钟相遇,此时距B码头8千米.
    【解析】
    (1)设y1=k1x+b,把(0,40),(30,0)代入得到方程组即可;设y2=k2x,把(120,40)代入即可解答;
    (2)联立y1,y2得到方程组,求出方程组的解,即可求出M点的坐标.
    【详解】
    解:设,
    把,代入得:,
    解得:,

    设,
    把代入得:,
    解得:,

    联立与得:,
    解得:,
    点M的坐标为,
    它的实际意义是:两船同时出发经24分钟相遇,此时距B码头8千米.
    本题考查了一次函数的应用,解决本题的关键是用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.
    15、是,理由见解析.
    【解析】
    根据,CD平分,,,可得,,根据正方形的判定定理可得:四边形CEDF是正方形.
    【详解】
    解:四边形CEDF是正方形,
    理由:,CD平分,,,
    ,,
    四边形CEDF是正方形,
    本题主要考查正方形的判定定理,解决本题的关键是要熟练掌握正方形的判定定理.
    16、(1)∠BGE=60°;(2)见解析.
    【解析】
    (1)由题意可证△ADB是等边三角形,可得AD=AB=BD,∠DAB=∠ADB=∠ABD,由“SAS”可证△ADE≌△DBF,可得∠ADE=∠DBF,由三角形外角性质可求∠BGE的大小;
    (2)过点C作CN⊥BF于点N,过点C作CM⊥ED于点M,由“AAS”可证Rt△CBN≌Rt△CDM,可得CM=CN,由角平分线的性质可得结论.
    【详解】
    (1)∵ABCD为菱形,
    ∴AB=AD.
    ∵∠BAD=60°,
    ∴△ABD为等边三角形.
    ∴∠A=∠BDF=60°.
    又∵AE=DF,AD=BD,
    ∴△AED≌△DFB;
    ∴∠DBG=∠ADE
    ∴∠EGB=∠DBG+∠BDG=∠ADE+∠BDG=∠ADB=60°
    (2)如图,过点C作CN⊥BF于点N,过点C作CM⊥ED于点M,
    由(1)得∠ADE=∠DBF
    ∴∠CBF=60°+∠DBF
    =60°+∠ADE
    =∠DEB
    又∠DEB=∠MDC
    ∴∠CBF=∠CDM
    ∵BC=CD,∠CBF=∠CDM,∠CMD=∠CNG=90°
    ∴Rt△CBN≌Rt△CDM(AAS)
    ∴CN=CM,且CN⊥BF,CM⊥ED
    ∴点C在∠BGD的平分线上
    即GC平分∠BGD.
    本题考查了菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.
    17、第一批盒装花每盒的进价是27元
    【解析】
    设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.
    【详解】
    设第一批盒装花每盒的进价是x元,则第二批盒装花每盒的进价是(x﹣3)元,
    根据题意得:1.5×=,
    解得:x=27,
    经检验,x=27是所列分式方程的解,且符合题意.
    答:第一批盒装花每盒的进价是27元.
    本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.
    18、(1)见解析;(2)①∠BDE=60°;②−1.
    【解析】
    (1)根据正方形的性质可以得出BC=DC,CG=CE,∠BCD=∠GCE=90°,再证明△BCG≌△DCE就可以得出结论;
    (2)①根据平行线的性质可以得出∠DCG=∠BDC=45°,可以得出∠BCG=∠BCE,可以得出△BCG≌△BCE,得出BG=BE得出△BDE为正三角形就可以得出结论;
    ②延长EC交BD于点H,通过证明△BCE≌△BCG就可以得出∠BEC=∠DEC,就可以得出EH⊥BD,BH=BD,由勾股定理就可以求出EH的值,从而求出结论.
    【详解】
    (1)证明:∵四边形ABCD和CEFG为正方形,
    ∴BC=DC,CG=CE,∠BCD=∠GCE=90°.
    ∴∠BCD+∠DCG=∠GCE+∠DCG,
    ∴∠BCG=∠DCE.
    在△BCG和△DCE中,

    ∴△BCG≌△DCE(SAS).
    ∴BG=DE;
    (2)①连接BE.
    由(1)可知:BG=DE.
    ∵CG∥BD,
    ∴∠DCG=∠BDC=45°.
    ∴∠BCG=∠BCD+∠GCD=90°+45°=135°.
    ∵∠GCE=90°,
    ∴∠BCE=360°−∠BCG−∠GCE=360°−135°−90°=135°.
    ∴∠BCG=∠BCE.
    ∵BC=BC,CG=CE,
    在△BCG和△BCE中,
    ,
    ∴△BCG≌△BCE(SAS).
    ∴BG=BE.
    ∵BG=BD=DE,
    ∴BD=BE=DE.
    ∴△BDE为等边三角形。
    ∴∠BDE=60°.
    ②延长EC交BD于点H,
    在△BCE和△DCE中,

    ∴△BCE≌△BCG(SSS),
    ∴∠BEC=∠DEC,
    ∴EH⊥BD,BH=BD.
    ∵BC=CD=,在Rt△BCD中由勾股定理,得
    ∴BD=2.
    ∴BH=1.
    ∴CH=1.
    在Rt△BHE中,由勾股定理,得
    EH=,
    ∴CE=−1.
    ∴正方形CEFG的边长为−1.
    此题考查四边形综合题,全等三角形的判定与性质,等边三角形的判定,勾股定理,正方形的性质,解题关键在于作辅助线和掌握判定定理.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、120
    【解析】
    【分析】设原计划每天种树x棵,则实际每天种树2x棵,根据题意列出分式方程,解之即可.
    【详解】设原计划每天种树x棵,则实际每天种树2x棵,
    依题可得:,
    解得:x=120,
    经检验x=120是原分式方程的根,
    故答案为:120.
    【点睛】本题考查了列分式方程解应用题,弄清题意,找出等量关系是解题的关键.
    20、17
    【解析】
    根据等腰三角形的可得第三条边为3或7,再根据三角形的三边性质即可得出三边的长度,故可求出三角形的周长.
    【详解】
    依题意得第三条边为3或7,又3+3<7,故第三条边不能为3,
    故三边长为3,7,7故周长为17.
    此题主要考查等腰三角形的性质,解题的关键是熟知三角形的构成条件.
    21、y=x(答案不唯一)
    【解析】
    试题分析:设此正比例函数的解析式为y=kx(k≠1),
    ∵此正比例函数的图象经过一、三象限,∴k>1.
    ∴符合条件的正比例函数解析式可以为:y=x(答案不唯一).
    22、
    【解析】
    根据菱形的性质,可得AC是BD的垂直平分线,可得AC上的点到D、B点的距离相等,连接BE交AC与P,可得答案.
    【详解】
    解:∵菱形的性质,
    ∴AC是BD的垂直平分线,AC上的点到B、D的距离相等.
    连接BE交AC于P点,
    PD=PB,
    PE+PD=PE+PB=BE,
    在Rt△ABE中,由勾股定理得

    故答案为3
    本题考查了轴对称,对称轴上的点到线段两端点的距离相等是解题关键.
    23、(2n-1,2n-1)
    【解析】
    首先由B1的坐标为(1,1),点B2的坐标为(3,2),可得正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,即可求得A1的坐标是(0,1),A2的坐标是:(1,2),然后由待定系数法求得直线A1A2的解析式,由解析式即可求得点A3的坐标,继而可得点B3的坐标,观察可得规律Bn的坐标是(2n-1,2n-1).
    【详解】
    解:∵B1的坐标为(1,1),点B2的坐标为(3,2),
    ∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,
    ∴A1的坐标是(0,1),A2的坐标是:(1,2),
    ∴,
    解得:,
    ∴直线A1A2的解析式是:y=x+1.
    ∵点B2的坐标为(3,2),
    ∴点A3的坐标为(3,4),
    ∴点B3的坐标为(7,4),
    ∴Bn的横坐标是:2n-1,纵坐标是:2n-1.
    ∴Bn的坐标是(2n-1,2n-1).
    故答案为: (2n-1,2n-1).
    此题考查了待定系数法求一次函数的解析式以及正方形的性质.此题难度适中,属于规律型题目,注意掌握数形结合思想与方程思想的应用.
    二、解答题(本大题共3个小题,共30分)
    24、(1);;(2)300分钟.
    【解析】
    (1)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;
    (2)根据(1)的结论列方程解答即可.
    【详解】
    解:(1)设,,由题意得:将,分别代入即可:



    故所求的解析式为;;
    (2)当通讯时间相同时,得,解得.
    答:通话300分钟时两种收费方式费用相等.
    本题考查的是用一次函数解决实际问题,熟悉相关性质是解题的关键.
    25、(1)详见解析;(2)4;(3)
    【解析】
    (1)先证出,得到,则有;
    (2)延长交的延长线于,先证出,得到,再由直角三角形的性质得到;
    (3)过作交于,交于,先证得得到,再进一步得到及,所以,,所以.
    【详解】
    (1)证明:∵四边形是正方形,
    ∴,,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴.
    (2)解:延长交的延长线于,
    ∵四边形是正方形,
    ∴,,
    ∵,
    ∴,,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴.
    (3).
    证明:过作交于,交于,
    则,易得
    ∴,
    ∴,
    由此可证平分,
    ∴,
    ∴,
    ∴,
    ∴为等腰直角三角形,
    ∴,
    ∴,
    ∴,
    ∴.
    本题考查了正方形的综合,熟练掌握正方形和三角形全等的判定与性质,添加恰当的辅助线是解题关键.
    26、见详解
    【解析】
    利用平行四边形的性质,结合条件可得出AF=EC,再利用全等三角形的判定与性质定理,即可得到结论.
    【详解】
    ∵在平行四边形中,
    ∴AD=BC,∠A=∠C,AD∥BC,
    ∴∠E=∠F,
    ∵,
    ∴AF=EC,
    在∆AGF与∆CHE中,
    ∵,
    ∴∆AGF≅ ∆CHE(ASA),
    ∴AG=CH.
    本题主要考查平行四边形的性质定理以及三角形全等的判定和性质定理,掌握平行四边形的性质以及ASA证三角形全等,是解题的关键.
    题号





    总分
    得分
    相关试卷

    2024-2025学年金昌市重点中学数学九上开学联考模拟试题【含答案】: 这是一份2024-2025学年金昌市重点中学数学九上开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省泗洪县联考数学九上开学联考模拟试题【含答案】: 这是一份2024-2025学年江苏省泗洪县联考数学九上开学联考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年吉林省农安县三岗中学九上数学开学联考模拟试题【含答案】: 这是一份2024-2025学年吉林省农安县三岗中学九上数学开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map