|试卷下载
终身会员
搜索
    上传资料 赚现金
    江西省吉安市第四中学2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】
    立即下载
    加入资料篮
    江西省吉安市第四中学2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】01
    江西省吉安市第四中学2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】02
    江西省吉安市第四中学2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江西省吉安市第四中学2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】

    展开
    这是一份江西省吉安市第四中学2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知直角三角形的两直角边长分别为5和12,则此直角三角形斜边上的中线长为()
    A.B.6C.13D.
    2、(4分)下列各组数中,以它们为边的三角形是直角三角形的是( )
    A.1,2,3B.9,16,25C.12,15,20D.1,2,
    3、(4分)整数满足,则的值为
    A.4B.5C.6D.7
    4、(4分)在▱ABCD中,已知∠A=60°,则∠C的度数是( )
    A.30°B.60°C.120°D.60°或120°
    5、(4分)等边△ABC的边长为6,点O是三边垂直平分线的交点,∠FOG=120°,∠FOG的两边OF,OG分别交AB,BC与点D,E,∠FOG绕点O顺时针旋转时,下列四个结论正确的是( )
    ①OD=OE;②;③;④△BDE的周长最小值为9.
    A.1个B.2个C.3个D.4个
    6、(4分)下列判断中,错误的是( )
    A.方程是一元二次方程B.方程是二元二次方程
    C.方程是分式方程D.方程是无理方程
    7、(4分)如图,在等边△ABC中,点P从A点出发,沿着A→B→C的路线运动,△ACP的面积为S,运动时间为t,则S与t的图像是( )
    A.B.
    C.D.
    8、(4分)在平面直角坐标系中,点位于( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)将一个有80个数据的一组数分成四组,绘出频数分布直方图,已知各小长方形的高的比为,则第二小组的频数为______.
    10、(4分)既是轴对称图形,又是中心对称图形的四边形是______.
    11、(4分)小明从A地出发匀速走到B地.小明经过(小时)后距离B地(千米)的函数图像如图所示.则A、B两地距离为_________千米.
    12、(4分)如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2=_____时∠ACB=90°.
    13、(4分)如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为_________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且∠BEF=90°,延长EF交BC的延长线于点G;
    (1)求证:△ABE∽△EGB;
    (2)若AB=4,求CG的长.
    15、(8分)在平行四边形ABCD中,点O是对角线BD中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE,如图1.
    (1)求证:四边形BEDF是平行四边形;
    (2)在(1)中,若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、R,如图2.
    ①当CD=6,CE=4时,求BE的长.
    ②探究BH与AF的数量关系,并给予证明.
    16、(8分)如图,AD 是△ABC 的角平分线,M 是 BC 的中点, FM∥AD 交 BA 的延长线于点 F,交 AC 于点 E.求证:
    (1)CE=BF.
    (2)AB+AC=2CE.
    17、(10分)计算(1)(+)(﹣)
    (2)2﹣6+3
    18、(10分)解方程:-=2
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)计算:.
    20、(4分)将边长分别为2、3、5的三个正方形按图所示的方式排列,则图中阴影部分的面积为 .
    21、(4分)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为 (用n表示)
    22、(4分)若一组数据1,3,,5,4,6的平均数是4,则这组数据的中位数是__________.
    23、(4分)如图所示,某人在D处测得山顶C的仰角为30°,向前走200米来到山脚A处,测得山坡AC的坡度i=1∶0.5,则山的高度为____________米.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)先化简,再求值:其中
    25、(10分)某校为了解全校学生上学期参加“生涯规划”社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:
    参加社区活动次数的频数、频率
    根据以上图表信息,解答下列问题:
    (1)表中a= , b= , m= , n= .
    (2)请把频数分布直方图补充完整(画图后请标注相应的数据);
    26、(12分)为了解某校九年级男生在体能测试的引体向上项目的情况,随机抽取了部分男生引体向上项目的测试成绩,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
    (Ⅰ)本次接受随机抽样调查的男生人数为 ,图①中m的值为 ;
    (Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;
    (Ⅲ)若规定引体向上6次及以上(含6次)为该项目良好,根据样本数据,估计该校320名九年级男生中该项目良好的人数.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    已知直角三角形的两直角边长分别为5和12,根据勾股定理求得斜边为13,根据直角三角形斜边上的中线等于斜边的一半,得此直角三角形斜边上的中线长为,故选D.
    2、D
    【解析】
    根据勾股定理的逆定理,只需验证两小边的平方和是否等于最长边的平方即可.
    【详解】
    解:A、∵12+22≠32,∴不能构成直角三角形,故本选项不符合题意;
    B、∵92+162≠252,∴不能构成直角三角形,故本选项不符合题意;
    C、∵122+152≠202,∴不能构成直角三角形,故本选项不符合题意;
    D、∵12+22=2,∴能够构成直角三角形,故本选项符合题意.
    故选:D.
    点评:本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
    3、A
    【解析】
    根据16<24<25,得出的取值范围,即可确定n的值.
    【详解】
    解:∵,且16<24<25,
    ∴4<<5,
    ∴n=4,
    故选:A.
    本题考查了估算无理数的大小,运用“夹逼法”是解决本题的关键.
    4、B
    【解析】
    由平行四边形的对角相等即可得出答案.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴∠C=∠A=60°;
    故选:B.
    本题考查了平行四边形的性质;熟练掌握平行四边形的对角相等是解题的关键.
    5、B
    【解析】
    连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠0CB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,所以BD=CE,OD=OE,则可对①进行判断;利用 得到四边形ODBE的面积 ,则可对进行③判断;作OH⊥DE,如图,则DH=EH,计算出=,利用面积随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△BDE的周长=BC+DE=4+DE=4+OE,根据垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.
    【详解】
    解:连接OB、OC,如图,
    ∵△ABC为等边三角形,
    ∴∠ABC=∠ACB=60°,
    ∵点0是△ABC的中心,
    ∴OB=OC,OB、OC分别平分∠ABC和∠ACB,
    ∴∠ABO=∠0BC=∠OCB=30°
    ∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,
    ∴∠BOD=∠COE,
    在△BOD和△COE中

    ∴△BOD2≌△COE,
    ∴BD=CE,OD=OE,所以①正确;
    ∴,
    ∴四边形ODBE的面积 ,所以③错误;
    作OH⊥DE,如图,则DH=EH,
    ∵∠DOE=120°,
    ∴∠ODE=∠OEH=30°,
    即S△ODE随OE的变化而变化,
    而四边形ODBE的面积为定值,
    所以②错误;
    ∵BD=CE,
    ∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=6+OE,当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,
    .△BDE周长的最小值=6+3=9,所以④正确.
    故选:B.
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.
    6、D
    【解析】
    可以先判断各个选项中的方程是什么方程,从而可以解答本题.
    【详解】
    解:A、x(x-1)=0是一元二次方程,故A正确;
    B、xy+5x=0是二元二次方程,故B正确;
    C、是分式方程,故C正确;
    D、是一元二次方程,故D错误.
    故选D.
    本题考查了各类方程的识别.
    7、C
    【解析】
    当点A开始沿AB边运动到点B时,△ACP的面积为S逐渐变大;当点A沿BC边运动到点C时,△ACP的面积为S逐渐变小. , ∴由 到 与由 到 用的时间一样.故选C.
    8、B
    【解析】
    应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.
    【详解】
    ∵点P(−1,2)的横坐标−1<0,纵坐标2>0,
    ∴点P在第二象限。
    故选:B.
    此题考查点的坐标,难度不大
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2
    【解析】
    各小长方形的高的比为3:3:2:3,就是各组频率的比,也是频数的比,根据一组数据中,各组的频率和等于3;各组的频数和等于总数,即可求解.
    【详解】
    ∵各小长方形的高的比为3:3:2:3,
    ∴第二小组的频率=3÷(3+3+2+3)=0.3.
    ∵有80个数据,
    ∴第二小组的频数=80×0.3=2.
    故答案为:2.
    本题是对频率、频数意义的综合考查.
    注意:各小组频数之和等于数据总和,各小组频率之和等于3.
    10、矩形(答案不唯一)
    【解析】
    根据轴对称图形与中心对称图形的概念,写一个即可.
    【详解】
    解:矩形既是轴对称图形,又是中心对称图形.
    故答案为:矩形(答案不唯一).
    本题考查了轴对称图形与中心对称图形的概念.
    11、20
    【解析】
    根据图象可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,据此解答即可.
    【详解】
    解:根据题意可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,
    所以A、B两地距离为:4×5=20(千米).
    故答案为:20
    本题考查了一次函数的应用,观察函数图象结合数量关系,列式计算是解题的关键.
    12、1
    【解析】
    设△ABC的三边分别为BC=a、AC=b、AB=c,当∠ACB=90°时,△ABC是直角三角形,由勾股定理可得到a2+b2=c2,即S1+S2=S3,代入可得解.
    【详解】
    设△ABC的三边分别为BC=a、AC=b、AB=c,
    ∴S1=a2=9,S2=b2,S3=c2=25,
    当∠ACB=90°时,△ABC是直角三角形,
    ∴a2+b2=c2,即S1+S2=S3,
    ∴S2=S3﹣S1=1.
    故答案为:1.
    本题考查了勾股定理的几何背景,灵活运用勾股定理是解题关键.
    13、6
    【解析】
    先证明△AOE≌△COF,Rt△BFO≌Rt△BFC,再证明△OBC、△BEF是等边三角形即可求出答案.
    【详解】
    如图,连接BO,
    ∵四边形ABCD是矩形,
    ∴DC∥AB,∠DCB=90°
    ∴∠FCO=∠EAO
    在△AOE与△COF中,
    ∴△AOE≌△COF
    ∴OE=OF,OA=OC
    ∵BF=BE
    ∴BO⊥EF,∠BOF=90°
    ∵∠BEF=2∠BAC=∠CAB+∠AOE
    ∴∠EAO=∠EOA,
    ∴EA=EO=OF=FC=2
    在Rt△BFO与Rt△BFC中
    ∴Rt△BFO≌Rt△BFC
    ∴BO=BC
    在Rt△ABC中,∵AO=OC,
    ∴BO=AO=OC=BC
    ∴△BOC是等边三角形
    ∴∠BCO=60°,∠BAC=30°
    ∴∠FEB=2∠CAB=60°,
    ∵BE=BF
    ∴EB=EF=4
    ∴AB=AE+EB=2+4=6,
    故答案为6.
    本题考查的是全等三角形的性质与判定和等边三角形的判定与性质,能够充分调动所学知识是解题本题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)证明见解析;(2)CG=6.
    【解析】
    (1)由正方形的性质与已知得出∠A=∠BEG,证出∠ABE=∠G,即可得出结论;
    (2)由AB=AD=4,E为AD的中点,得出AE=DE=2,由勾股定理得出BE=,由△ABE∽△EGB,得出,求得BG=10,即可得出结果.
    【详解】
    (1)证明:∵四边形ABCD为正方形,且∠BEG=90°,
    ∴∠A=∠BEG,
    ∵∠ABE+∠EBG=90°,∠G+∠EBG=90°,
    ∴∠ABE=∠G,
    ∴△ABE∽△EGB;
    (2)∵AB=AD=4,E为AD的中点,
    ∴AE=DE=2,
    在Rt△ABE中,BE=,
    由(1)知,△ABE∽△EGB,
    ∴,即:,
    ∴BG=10,
    ∴CG=BG﹣BC=10﹣4=6.
    本题主要考查了四边形与相似三角形的综合运用,熟练掌握二者相关概念是解题关键
    15、(1)详见解析;(2)①4﹣2;②AF=BH,详见解析
    【解析】
    (1)由“ASA”可得△BOE≌△DOF,可得DF=BE,可得结论;
    (2)①由等腰三角形的性质可得EN=CN=2,由勾股定理可求DN,由等腰三角形的性质可求BN的长,即可求解;
    ②如图,过点H作HM⊥BC于点M,由“AAS”可证△HMC≌△CND,可得HM=CN,由等腰直角三角形的性质可得BH=HM,即可得结论.
    【详解】
    (1)证明:∵平行四边形ABCD中,点O是对角线BD中点,
    ∴AD∥BC,BO=DO,
    ∴∠ADB=∠CBD,且∠DOF=∠BOE,BO=DO,
    ∴△BOE≌△DOF(ASA)
    ∴DF=BE,且DF∥BE,
    ∴四边形BEDF是平行四边形;
    (2)①如图2,过点D作DN⊥EC于点N,
    ∵DE=DC=6,DN⊥EC,
    ∴EN=CN=2,
    ∴DN===4,
    ∵∠DBC=45°,DN⊥BC,
    ∴∠DBC=∠BDN=45°,
    ∴DN=BN=4,
    ∴BE=BN﹣EN=4﹣2;
    故答案为:BE=4﹣2.
    ②AF=BH,
    理由如下:如图,过点H作HM⊥BC于点M,
    ∵DN⊥EC,CG⊥DE,
    ∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°,
    ∴∠EDN=∠ECG,
    ∵DE=DC,DN⊥EC,
    ∴∠EDN=∠CDN,EC=2CN,
    ∴∠ECG=∠CDN,
    ∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN,
    ∴∠CDB=∠DHC,
    ∴CD=CH,且∠HMC=∠DNC=90°,∠ECG=∠CDN,
    ∴△HMC≌△CND(AAS)
    ∴HM=CN,
    ∵HM⊥BC,∠DBC=45°,
    ∴∠BHM=∠DBC=45°,
    ∴BM=HM,
    ∴BH=HM,
    ∵AD=BC,DF=BE,
    ∴AF=EC=2CN,
    ∴AF=2HM=BH.
    故答案为:AF=BH.
    本题是四边形综合题,考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.
    16、(1)见解析;(2)见解析
    【解析】
    (1)延长CA交FM的平行线BG于G点,利用平行线的性质得到BM=CM、CE=GE,从而证得CE=BF;
    (2)利用上题证得的EA=FA、CE=BF,进一步得到AB+AC=AB+AE+EC=AB+AF+EC=BF+EC=2EC.
    【详解】
    解:(1)证明:延长CA交FM的平行线BG于G点,
    则∠G=∠CAD,∠GBA=∠BAD,
    ∵AD平分∠BAC,
    ∴∠BAD=∠CAD,
    ∴AG=AB,
    ∵FM∥AD
    ∴∠F=∠BAD、∠FEA=∠DAC
    ∵∠BAD=∠DAC,
    ∴∠F=∠FEA,
    ∴EA=FA,
    ∴GE=BF,
    ∴M为BC边的中点,
    ∴BM=CM,
    ∵EM∥GB,
    ∴CE=GE,
    ∴CE=BF;
    (2)证明:∵EA=FA、CE=BF,
    ∴AB+AC=AB+AE+EC=AB+AF+EC=BF+EC=2EC.
    本题考查了三角形的中位线定理,解题的关键是正确地构造辅助线,另外题目中还考查了平行线等分线段定理.
    17、(1)2;(2)14
    【解析】
    (1)根据平方差公式可以解答本题;
    (2)根据二次根式的加减法可以解答本题.
    【详解】
    解:(1)
    =5﹣3
    =2;
    (2)

    =.
    本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.
    18、x=-1
    【解析】
    方程两边同时乘以最简公分母x2-4,把分式方程转化为整式方程求解.
    【详解】
    解:方程两边都乘以(x+2)(x-2)得:(x-1)(x+2)-4=2(x+2)(x-2),
    即x2-x-2=0,
    解得:x=-1或2,
    检验:当x=-1时,(x+2)(x-2)≠0,所以x=-1是原方程的解,
    当x=2时,(x+2)(x-2)=0,所以x=2不是原方程的解,
    所以原方程组的解为:x=-1.
    故答案为:x=-1.
    本题考查了解分式方程.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    20、
    【解析】
    因为阴影部分的面积=S正方形BCQW﹣S梯形VBCF,根据已知求得梯形的面积即不难求得阴影部分的面积了.
    解:∵VB∥ED,三个正方形的边长分别为2、3、5,
    ∴VB:DE=AB:AD,即VB:5=2:(2+3+5)=1:5,
    ∴VB=1,
    ∵CF∥ED,
    ∴CF:DE=AC:AD,即CF:5=5:10
    ∴CF=2.5,
    ∵S梯形VBFC=(BV+CF)•BC=,
    ∴阴影部分的面积=S正方形BCQW﹣S梯形VBCF=.
    故答案为.
    21、(2n,1)
    【解析】
    试题分析:根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可:
    由图可知,n=1时,4×1+1=5,点A5(2,1),
    n=2时,4×2+1=9,点A9(4,1),
    n=3时,4×3+1=13,点A13(6,1),
    ∴点A4n+1(2n,1).
    22、4.5
    【解析】
    根据题意可以求得x的值,从而可以求的这组数据的中位数.
    【详解】
    解:∵数据1、3、x、5、4、6的平均数是4,

    解得:x=5,
    则这组数据按照从小到大的顺序排列为:1,3,4,5,5,6
    则中位数为
    故答案为:4.5
    本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.
    23、
    【解析】
    本题是把实际问题转化为解直角三角形问题,由题意,已知DA=200,∠CDB=30°,CB:AB=1:0.5,∠CBD=90°,求CB.设AB=x,则CB=2x,由三角函数得:=tan30°,即=,求出x,从求出CB.即求出山的高度.
    解:已知山坡AC的坡度i=1:0.5,
    ∴设AB=x,则CB=2x,又某人在D处测得山顶C的仰角为30°,即,∠CDB=30°,
    ∴=tan30°,即=,
    解得:x=,
    ∴CB=2x=,
    故答案为.
    二、解答题(本大题共3个小题,共30分)
    24、
    【解析】
    先去括号,再把除法统一为乘法把分式化简,再把数代入.
    【详解】
    解:原式
    当时,原式.
    本题考查分式的混合运算,通分、分解因式、约分是关键.
    25、(1)12,4,0.08, 0.04;(2)补图见解析.
    【解析】
    分析:(1)直接利用已知表格中3<x≤6范围的频率求出频数a即可,再求出m的值,即可得出b、n的值;
    (2)利用(1)中所求补全条形统计图即可.
    详解:(1)由题意可得:10÷0.2=50,a=50×0.24=12(人).
    ∵m=50-10-12-16-6-2=4,
    ∴b==0.08,,解得:n=0.04;
    故答案为:12,4,0.08, 0.04 ;
    (2)如图所示:

    点睛:本题主要考查了频数分布直方图,正确将条形统计图和表格中数据相联系是解题的关键.
    26、 (Ⅰ) 40;25;(Ⅱ)平均数为5.8次;众数为5;中位数为6;(Ⅲ)176名.
    【解析】
    (Ⅰ)用5次的人数除以5次的人数所占百分比即可得抽查的总人数;求出6次的人数与总人数的比即可得m的值;(Ⅱ)根据平均数、众数和中位数的定义求解即可;(Ⅲ)先求出6次及以上的学生所占的百分比,用320乘以这个百分比即可得答案.
    【详解】
    (Ⅰ)12÷30%=40(名);
    ×100%=25%,
    ∴m=25,
    故答案为40;25
    (Ⅱ)平均数为:(6×4+12×5+10×6+8×7+4×8)÷40=5.8(次)
    ∵这组数据中,5出现了12次,出现次数最多,
    ∴这组数据的众数为5,
    ∵将这组数据从小到大排列,其中处于中间的两个数都是6,
    ∴=6,即中位数为6,
    (Ⅲ)6次及以上的学生人数为10+8+4=22(名)
    ∴×320=176(名)
    答:估计该校名九年级男生中该项目良好的人数为176名.
    本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.
    题号





    总分
    得分
    活动次数x
    频数
    频率
    0<x≤3
    10
    0.20
    3<x≤6
    a
    0.24
    6<x≤9
    16
    0.32
    9<x≤12
    6
    0.12
    12<x≤15
    b
    m
    15<x≤18
    2
    n
    相关试卷

    湖南长沙雅礼实验中学2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份湖南长沙雅礼实验中学2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖南长沙雅礼实验中学2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份湖南长沙雅礼实验中学2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    成都十八中学2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份成都十八中学2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map