2025届江西省赣州市宁都县数学九年级第一学期开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在圆的周长C=2πR中,常量与变量分别是( )
A.2是常量,C、π、R是变量B.2π是常量,C,R是变量
C.C、2是常量,R是变量D.2是常量,C、R是变量
2、(4分)如图,在中,,于点,和的角平分线相较于点,为边的中点,,则( )
A.125°B.145°C.175°D.190°
3、(4分)如图,矩形ABCD中,AB=8,BC=4,把矩形ABCD沿过点A的直线AE折叠,点D落在矩形ABCD内部的点D′处,则CD′的最小值是( )
A.4B.C.D.
4、(4分)环保部门根据我市一周的检测数据列出下表.这组数据的中位数是
A.B.C.D.
5、(4分)边长是4且有一个内角为60°的菱形的面积为( )
A.2B.4C.8D.16
6、(4分)若在实数范围内有意义,则a的取值范围是( )
A.a≥B.a≤C.a>D.a<
7、(4分)某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:
根据上表中的信息判断,下列结论中错误的是( )
A.该班一共有42名同学
B.该班学生这次考试成绩的众数是8
C.该班学生这次考试成绩的平均数是27
D.该班学生这次考试成绩的中位数是27分
8、(4分)若式子有意义,则的取值范围为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在直角梯形ABCD中,,,,联结BD,若△BDC是等边三角形,那么梯形ABCD的面积是_________;
10、(4分)在平面直角坐标系中,一次函数的图象与轴的交点坐标为__________.
11、(4分)工人师傅给一幅长为,宽为的矩形书法作品装裱,作品的四周需要留白如图所示,已知左、右留白部分的宽度一样,上、下留白部分的宽度也一样,而且左侧留白部分的宽度是上面留白部分的宽度的2倍,使得装裱后整个挂图的面积为. 设上面留白部分的宽度为,可列得方程为________。
12、(4分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若CD=BD,点D到边AB的距离为6,则BC的长是____.
13、(4分)将直线向下平移4个单位,所得到的直线的解析式为___.
三、解答题(本大题共5个小题,共48分)
14、(12分)四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上。
(1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是_____________;
(2)规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数为胜;反之,则为负。你认为这个游戏是否公平?请说明理由。
15、(8分)若一次函数不经过第三象限,求m、n的取值范围;
16、(8分)一个边数为的多边形中所有对角线的条数是边数为的多边形中所有对角线条数的6倍,求这两个多边形的边数.
17、(10分)已知在线段AB上有一点C(点C不与A、B重合且AC>BC),分别以AC、BC为边作正方形ACED和正方形BCFG,其中点F在边CE上,连接AG.
(1)如图1,若AC=7,BC=5,则AG=______;
(2)如图2,若点C是线段AB的三等分点,连接AE、EG,求证:△AEG是直角三角形.
18、(10分)如图,在四边形中,,、相交于点,为中点,延长到点,使.
(1)求证:;
(2)求证:四边形为平行四边形;
(3)若,,,直接写出四边形的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)化简:______.
20、(4分)二次根式中字母 a 的取值范围是______.
21、(4分)如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为_____________cm.
22、(4分)将点先向左平移6个单位,再向下平移4个单位得到点,则的坐标是__.
23、(4分)分式的值为0,那么的值为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)在中,,BD为AC边上的中线,过点C作于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取,连接BG,DF.
求证:;
求证:四边形BDFG为菱形;
若,,求四边形BDFG的周长.
25、(10分)如图,在平面直角坐标系中,O为坐标原点,直线l1:y=kx+4与y轴交于点A,与x轴交于点B.
(1)请直接写出点A的坐标:______;
(2)点P为线段AB上一点,且点P的横坐标为m,现将点P向左平移3个单位,再向下平移4个单位,得点P′在射线AB上.
①求k的值;
②若点M在y轴上,平面内有一点N,使四边形AMBN是菱形,请求出点N的坐标;
③将直线l1绕着点A顺时针旋转45°至直线l2,求直线l2的解析式.
26、(12分)把一个足球垂直地面向上踢,t(秒)后该足球的高度h(米)适用公式h=10t﹣5t1.
(1)经多少秒后足球回到地面?
(1)试问足球的高度能否达到15米?请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据变量常量的定义在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,可求解.
【详解】
在圆的周长公式中中,C与r是改变的,π是不变的;
所以变量是C,R,常量是2π.
故答案选B
本题考查了变量与常量的知识,属于基础题,正确理解变量与常量的概念是解题的关键.
2、C
【解析】
根据直角三角形的斜边上的中线的性质,即可得到△CDF是等边三角形,进而得到∠ACD=60°,根据∠BCD和∠BDC的角平分线相交于点E,即可得出∠CED=115°,即可得到∠ACD+∠CED=60°+115°=175°.
【详解】
如图:
∵CD⊥AB,F为边AC的中点,
∴DF=AC=CF,
又∵CD=CF,
∴CD=DF=CF,
∴△CDF是等边三角形,
∴∠ACD=60°,
∵∠B=50°,
∴∠BCD+∠BDC=130°,
∵∠BCD和∠BDC的角平分线相交于点E,
∴∠DCE+∠CDE=65°,
∴∠CED=115°,
∴∠ACD+∠CED=60°+115°=175°,
故选:C.
本题主要考查了直角三角形的斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.
3、C
【解析】
根据翻折的性质和当点D'在对角线AC上时CD′最小解答即可.
【详解】
解:当点D'在对角线AC上时CD′最小,
∵矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE折叠点D落在矩形ABCD内部的点D处,
∴AD=AD'=BC=2,
在Rt△ABC中,AC===4,
∴CD'=AC-AD'=4-4,
故选:C.
本题考查了翻折变换、矩形的性质、勾股定理,利用勾股定理求出AC的长度是解题的关键.
4、C
【解析】
将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.
【详解】
根据中位数的概念,可知这组数据的中位数为:21
故答案选:C
本题考查中位数的概念,将一组数据从小到大或从大到小重新排列后,最中间的那个数或者最中间两个数的平均数叫做这组数据中位数,如果中位数的概念掌握不好,不把数据按照要求重新排列,就会出错.
5、C
【解析】
根据菱形内角度数及边长求出一边上的高,利用边长乘以高即可求出面积.
【详解】
解:如图,过点A作AE⊥BC于点E,
∵
∴ .
∴菱形面积为 4×2=8.
故选:C.
本题主要考查菱形的面积,能够求出菱形边上的高是解题的关键.
6、A
【解析】
直接利用二次根式有意义则2a+3≥0,进而得出答案.
【详解】
解:在实数范围内有意义,则2a+3≥0,
解得:.
故选:A.
此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.
7、B
【解析】
根据众数,中位数,平均数的定义解答.
【详解】
解:该班共有6+5+5+8+7+7+4=42(人),
成绩27分的有8人,人数最多,众数为27;
该班学生这次考试成绩的平均数是=(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,
该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,
故选:B.
本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.
8、A
【解析】
根据二次根式有意义的条件可得x−2≥0,再解不等式可得答案.
【详解】
解:由题意得:x−2≥0,
解得:x≥2,
故选:A.
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
【分析】作DE⊥BC,先证四边形ABED是矩形,得AD=BE=3,AB=DE,再根据等边三角形性质得到BC=2BE=6,∠BDE=60°,再利用勾股定理可求得高,再运用梯形面积计算公式可求得结果.
【详解】作DE⊥BC,
因为四边形ABCD的直角梯形,,,
所以,四边形ABED是矩形,
所以,AD=BE=3,AB=DE,
又因为,三角形BCD是等边三角形,
所以,BC=2BE=6,∠BDE=60°,
所以,在直角三角形BED中,BD=BC=6,由勾股定理可得
DE=,
所以,AB=DE=
所以,梯形ABCD的面积是:
故答案为:
【点睛】本题考核知识点:直角梯形.解题关键点:作辅助线,把问题转化为直角三角形解决.
10、
【解析】
把x=0代入函数解析式即可得解.
【详解】
解:把x=0代入一次函数y=kx+1得y=1,
所以图象与y轴的交点坐标是(0,1).
故答案为:(0,1).
本题考查了一次函数的图象与坐标轴的交点.
11、(120+4x)(40+2x)=1
【解析】
设上面留白部分的宽度为xcm,则左右空白部分为2x,根据题意得出方程,计算即可求出答案.
【详解】
设上面留白部分的宽度为xcm,则左右空白部分为2x,可列得方程为:
(120+4x)(40+2x)=1.
故答案为:(120+4x)(40+2x)=1.
此题考查由实际问题抽象出一元二次方程,正确表示出变化后的长与宽是解题关键.
12、2
【解析】
过D作DE⊥AB于E,则DE=1,根据角平分线性质求出CD=DE=1,求出BD即可.
【详解】
过D作DE⊥AB于E.
∵点D到边AB的距离为1,∴DE=1.
∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=1.
∵CDDB,∴DB=12,∴BC=1+12=2.
故答案为2.
本题考查了角平分线性质的应用,注意:角平分线上的点到这个角的两边的距离相等.
13、
【解析】
直接根据“上加下减”的平移规律求解即可.
【详解】
将直线向下平移4个单位长度,所得直线的解析式为,即.
故答案为:.
本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.
三、解答题(本大题共5个小题,共48分)
14、(1)(2)不公平.获胜,否则.
【解析】游戏是否公平,关键要看游戏双方取胜的机会是否相等,即判断双方取胜的概率是否相等,即转化为在总情况明确的情况下,判断双方取胜的情况数目是否相等.
15、
【解析】
根据一次函数的图像不经过第三象限得到k<0,b≥0,故可求解.
【详解】
题意有:
解得
此题主要考查一次函数的图像,解题的关键是熟知一次函数的图像与性质.
16、这两个多边形的边数分别为12和6.
【解析】
n边形的对角线有条,2n边形的对角线有条,根据题意可列出方程,再解方程求解即可.
【详解】
解:由多边形的性质,可知边形共有条对角线.
由题意,得.
解得.
∴.
∴这两个多边形的边数分别为12和6.
本题考查了多边形对角线的性质(条数)和解一元一次方程,熟记n边形对角线的条数公式是解此题的关键.
17、(1)13;(2)见解析
【解析】
(1)由正方形的性质得出∠B=90°,BG=BC=5,则AB=AC+BC=12,由勾股定理即可得出结果;
(2)设BC=a,由正方形的性质和点C是线段AB的三等分点得出AC=CE=2BC=2CF=2a,BC=BG=FG=CF=EF=a,∠B=∠ACE=∠EFG=∠EFG=90°,由勾股定理得出AE2=AC2+CE2=8a2,AG2=AB2+BG2=10a2,EG2=EF2+FG2=2a2,证得AG2=AE2+EG2,即可得出结论.
【详解】
(1)解:∵四边形BCFG是正方形,
∴∠B=90°,BG=BC=5,
∵AB=AC+BC=7+5=12,
∴AG===13,
故答案为:13;
(2)证明:设BC=a,
∵四边形ACED和四边形BCFG都是正方形,点C是线段AB的三等分点,
∴AC=CE=2BC=2CF=2a,BC=BG=FG=CF=EF=a,∠B=∠ACE=∠EFG=∠EFG=90°,
∴AE2=AC2+CE2=8a2,
AB=3BC=3a,
AG2=AB2+BG2=9a2+a2=10a2,
EG2=EF2+FG2=a2+a2=2a2,
∴AE2+EG2=8a2+2a2=10a2,
∴AG2=AE2+EG2,
∴△AEG是直角三角形.
此题考查正方形的性质,勾股定理,熟练掌握正方形的性质与勾股定理是解题的关键.
18、(1)见解析(2)见解析(3)
【解析】
(1)由AAS证明△ADE≌△CBE,即可得出AE=CE;
(2)先证明四边形ABCD是平行四边形,得出AB∥CD,AB=CD,证出AB=DF,即可得出四边形ABDF为平行四边形;
(3)由平行四边形的性质得出∠F=∠DBA,BD=AF=2,AB=DF,证出∠DBA=∠BAC,得出AE=BE=DE,证出∠BAD=90°,由勾股定理求出AD==,
即可得出四边形ABDF的面积.
【详解】
解答:(1)证明:∵AD∥CB,
∴∠DAC=∠BCA,
∵E为BD中点,
∴DE=BE,
在△ADE和△CBE中,
∴△ADE≌△CBE(AAS),
∴AE=CE;
(2)证明:由(1)得:AE=CE,BE=DE,
∴四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵DF=CD,
∴AB∥DF,AB=DF,
∴四边形ABDF为平行四边形;
(3)解:∵四边形ABDF为平行四边形,
∴∠F=∠DBA,BD=AF=2,AB=DF,
∵∠BEC=2∠F,∠BEC=∠DBA+∠BAC,
∴∠DBA=∠BAC,
∴AE=BE=DE,
∴∠BAD=90°,
∵AB=CD=1,
∴AD==,
∵DF=AB=1,
∴四边形ABDF的面积=DF×AD=
本题考查了平行四边形的判定与性质、全等三角形的判定与性质、勾股定理、直角三角形的判定、等腰三角形的判定等知识;熟练掌握平行四边形的判定与性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3
【解析】
分析:根据算术平方根的概念求解即可.
详解:因为32=9
所以=3.
故答案为3.
点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.
20、.
【解析】
运用二次根式中的被开方数的非负性进行求解即可,即有意义,则a≥0.
【详解】
解:由题意得2a+5≥0,解得:.
故答案为.
本题考查了二次根式的意义和性质,对于二次根式而言,关键是要注意两个非负性:一是a≥0,二是≥0;在各地试卷中是高频考点.
21、4.
【解析】
试题分析:连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,
∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=AC=2cm,
∴OB==2cm,∴BD=2OB=4cm.
故答案为4.
考点: 菱形的性质;线段垂直平分线的性质.
22、
【解析】
根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.
【详解】
解:将点A(4,3)先向左平移6个单位,再向下平移4个单位得到点A1,则A1的坐标是(4-6,3-4),即(-2,-1),
故答案为:(-2,-1).
本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.
23、-1
【解析】
根据分式值为0得出分子等于0求出x的值,再根据分母不等于0排除x=1,即可得出答案.
【详解】
∵分式的值为0
∴
解得:x=1或x=-1
又x-1≠0
∴x=-1
故答案为-1.
本题考查的是分式的值为0,属于基础题型,注意分式值为0则分子等于0,但分母不等于0.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析(2)证明见解析(3)1
【解析】
利用平行线的性质得到,再利用直角三角形斜边上的中线等于斜边的一半即可得证,
利用平行四边形的判定定理判定四边形BDFG为平行四边形,再利用得结论即可得证,
设,则,利用菱形的性质和勾股定理得到CF、AF和AC之间的关系,解出x即可.
【详解】
证明:,,
,
又为AC的中点,
,
又,
,
证明:,,
四边形BDFG为平行四边形,
又,
四边形BDFG为菱形,
解:设,则,,
在中,,
解得:,舍去,
,
菱形BDFG的周长为1.
本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.
25、(1)(0,1);(2)①k=;②N(-3,);③直线 l2的解析式为y=x+1.
【解析】
(1)令,求出相应的y值,即可得到A的坐标;
(2)①先设出P的坐标,然后通过点的平移规律得出平移后 的坐标,然后将代入 中即可求出k的值;
②作AB的中垂线与y轴交于M点,连结BM,分别作AM,BM的平行线,相交于点N,则四边形AMBN是菱形, 设M(0,t),然后利用勾股定理求出t的值,从而求出OM的长度,然后利用BN=AM求出BN的长度,即可得到N的坐标;
③先根据题意画出图形,过点B作BC⊥l1,交l2于点C,过点C作CD⊥x轴于D,利用等腰三角形的性质和AAS证明△AOB≌△BDC,得出AO=BD,OB=DC,进一步求出点C的坐标,然后利用待定系数法即可求出直线l2的解析式.
【详解】
(1)∵y=kx+1与y轴交于点A,
令, ,
∴A(0,1).
(2)①由题意得:P(m,km+1),
∵将点P向左平移3个单位,再向下平移1个单位,得点P′,
∴P′(m-3,km),
∵P′(m-3,km)在射线AB上,
∴k(m-3)+1=km,
解得:k=.
②如图,作AB的中垂线与y轴交于M点,连结BM,过点B作AM的平行线,过点A作BM的平行线,两平行线相交于点N,则四边形AMBN是菱形.
,
,
当 时,,解得 ,
∴ .
设M(0,t),则AM=BM=1-t,
在Rt△BOM中,OB2+OM2=BM2,
即32+t2=(1-t)2,
解得:t=,
∴M(0,),
∴OM=,BN=AM=1-=,
∴N(-3,).
③如图,过点B作BC⊥l1,交l2于点C,过点C作CD⊥x轴于D.则∠ABC=∠BDC=90°,
∵∠BAC=15°,
∴△ABC是等腰直角三角形,
∴AB=BC,∠ABO+∠CBD=90°,
又∵∠ABO+∠BAO=90°,
∴∠BAO=∠CBD,
在和中,
∴△AOB≌△BDC(AAS),
∴AO=BD=1,OB=DC=3,
∴OD=OB+BD=3+1=7,
∴C(-7,3),
设直线 l2的解析式为:y=ax+1,
则-7a+1=3,
解得:a=.
∴直线 l2的解析式为:y=x+1.
本题主要考查全等三角形的判定及性质,菱形的性质,勾股定理,一次函数与几何综合,解题的关键在于合理的添加辅助线,构造出全等三角形.
26、(1)4;(1)不能.
【解析】
求出时t的值即可得;
将函数解析式配方成顶点式,由顶点式得出足球高度的最大值即可作出判断.
【详解】
(1)当h=0时,10t﹣5t1=0,解得:t=0或t=4,
答:经4秒后足球回到地面;
(1)不能,理由如下:
∵h=10t﹣5t1=﹣5(t﹣1)1+10,
∴由﹣5<0知,当t=1时,h的最大值为10,不能达到15米,
故足球的高度不能达到15米.
本题考查了二次函数的应用,解题的关键是熟练掌握二次函数的性质及将实际问题转化为二次函数问题的能力.
题号
一
二
三
四
五
总分
得分
批阅人
成绩(分)
24
25
26
27
28
29
30
人数(人)
6
5
5
8
7
7
4
2025届安阳市数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份2025届安阳市数学九年级第一学期开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年云南省红河市数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024年云南省红河市数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年海南省九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024年海南省九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。