江苏省盐城市响水县2025届数学九上开学考试模拟试题【含答案】
展开
这是一份江苏省盐城市响水县2025届数学九上开学考试模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)方程x(x﹣1)=x的解是( )
A.x=0B.x=2C.x1=0,x2=1D.x1=0,x2=2
2、(4分)直线y=k1x+b与直线y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x+c的解集为( )
A.B.C.D.
3、(4分)如图,平行四边形ABCD中,AE平分∠BAD,若CE=4cm,AD=5cm,则平行四边形ABCD的周长是( )
A.25cmB.20cmC.28cmD.30cm
4、(4分)数据2,4,3,4,5,3,4的众数是( )
A.4B.5C.2D.3
5、(4分)如图,小明在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于的长为半径画弧,两弧相交于C、D两点,直线CD即为所求.根据他的作图方法可知四边形一定是( )
A.矩形B.菱形C.正方形D.无法确定
6、(4分)一个多边形的内角和是外角和的2倍,这个多边形是( )
A.四边形B.五边形C.六边形D.八边形
7、(4分)若分式有意义,则的取值范围是( )
A.B.C.D.
8、(4分)如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线上一点,则点B与其对应点B′间的距离为
A. B.3 C.4 D.5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)将直线y= 7x向下平移2个单位,所得直线的函数表达式是________.
10、(4分)如图,中,,平分,点为的中点,连接,若的周长为24,则的长为______.
11、(4分)如图,在矩形OABC中,点B的坐标是(1,3),则AC的长是_____.
12、(4分)汽车行驶前油箱中有汽油52公升,已知汽车每百公里耗油8公升,油箱中的余油量Q(公升)(油箱中剩余的油量不能少于4公升)与它行驶的距离s(百公里)之间的函数关系式为_____(注明s的取值范围).
13、(4分)设的整数部分为,小数部分为,则的值等于________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知和线段a,求作菱形ABCD,使,.(只保留作图痕迹,不要求写出作法)
15、(8分)如图,在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8cm,r=1.6cm,请利用因式分解求出剩余阴影部分的面积(结果保留π)
16、(8分)如图,在四边形ABCD中,AC⊥CD,若AB=4,BC=5,AD=2,∠D=30°,求四边形ABCD的面积.
17、(10分)如图,点E是正方形ABCD的边AB上任意一点,过点D作DF⊥DE交BC的延长线于点F.求证:DE=DF.
18、(10分)如图,在▱ABCD中,AC为对角线,BF⊥AC,DE⊥AC,F、E为垂足,求证:BF=DE.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)将正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如图所示方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线和x轴上,则点B2019的横坐标是______.
20、(4分)已知四边形ABCD是平行四边形,下列结论中错误的有__________.①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形。
21、(4分)当________时,方程无解.
22、(4分)点A(-2,3)关于x轴对称的点B的坐标是_____
23、(4分)命题“对角线相等的平行四边形是矩形”的逆命题为________________________
二、解答题(本大题共3个小题,共30分)
24、(8分)已知,AC是□ABCD的对角线,BM⊥AC,DN⊥AC,垂足分别是M、N.
求证:四边形BMDN是平行四边形.
25、(10分)如图,正方形的对角线、相交于点,,.
(1)求证:四边形是正方形.
(2)若,则点到边的距离为______.
26、(12分)已知矩形周长为18,其中一条边长为x,设另一边长为y.
(1)写出y与x的函数关系式;
(2)求自变量x的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
x(x−1)=x,
x(x−1)−x=0,
x(x−1−1)=0,
x=0,x−1−1=0,
x1=0,x1=1.
故选:D.
本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.
2、B
【解析】
根据函数的图象得出两函数的交点坐标,再根据图象即可得出答案.
【详解】
∵根据图象可知:两函数的交点坐标为(1,-2),
∴关于x的不等式k1x+b>k2x+c的解集是x>1,
故选B.
本题考查了一次函数与一元一次不等式的性质,能根据函数的图象得出两函数的交点坐标是解此题的关键.
3、C
【解析】
只要证明AD=DE=5cm,即可解决问题.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB∥CD,AD=BC=5cm,CD=AB,
∴∠EAB=∠AED,
∵∠EAB=∠EAD,
∴∠DEA=∠DAE,
∴AD=DE=5cm,
∵EC=4cm,
∴AB=DC=9cm,
∴四边形ABCD的周长=2(5+9)=28(cm),
故选C.
本题考查平行四边形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
4、A
【解析】
根据众数的定义求解即可.
【详解】
∵4出现的次数最多,
∴众数是4.
故选A.
本题考查了众数及中位数的定义,众数是一组数据中出现次数最多的那个数.
5、B
【解析】
根据菱形的判定方法:四边都相等的四边形是菱形判定即可.
【详解】
根据作图方法可得:,
因此四边形ABCD一定是菱形.
故选:B
本题考查了菱形的判定,解题的关键在于根据四边相等的四边形是菱形判断.
6、C
【解析】
此题可以利用多边形的外角和和内角和定理求解.
【详解】
解:设所求多边形边数为n,由题意得
(n﹣2)•180°=310°×2
解得n=1.
则这个多边形是六边形.
故选C.
本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于310°,n边形的内角和为(n﹣2)•180°.
7、A
【解析】
根据分式有意义的条件,得到关于x的不等式,进而即可求解.
【详解】
∵分式有意义,
∴,即:,
故选A.
本题主要考查分式有意义的条件,掌握分式的分母不等于零,是解题的关键.
8、C
【解析】
试题分析:如图,连接AA′、BB′,
∵点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,
∴点A′的纵坐标是3。
又∵点A的对应点在直线上一点,∴,解得x=4。
∴点A′的坐标是(4,3)。
∴AA′=4。
∴根据平移的性质知BB′=AA′=4。
故选C。
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=7x-2
【解析】
根据一次函数平移口诀:上加下减,左加右减,计算即可.
【详解】
将直线y= 7x向下平移2个单位,则y=7x-2.
本题是对一次函数平移的考查,熟练掌握一次函数平移口诀是解决本题的关键.
10、18
【解析】
利用等腰三角形三线合一的性质可得BD=CD,又因E为AC中点,根据三角形的中位线定理及直角三角形斜边中线的性质可得CE=AC=7.5,DE=AB=7.5,再由△CDE的周长为24 ,求得CD=9,即可求得BC的长.
【详解】
∵AB=AC,AD平分∠BAC,
∴BD=CD,AD⊥BC,
∵E为AC中点,
∴CE=AC==7.5,DE=AB==7.5,
∵CD+DE+CE=24,
∴CD=24-7.5-7.5=9,
∴BC=18,
故答案为18 .
本题考查了等腰三角形的性质、三角形的中位线定理及直角三角形斜边的性质,求得CE=AC=7.5,DE=AB=7.5是解决问题的关键.
11、
【解析】
连接OB,由矩形的对角线相等可得AC=OB,再计算OB的长即可.
【详解】
解:连接OB,过点B作BD⊥x轴于点D,
∵点B的坐标是(1,3),
∴OD=1,BD=3,
则在Rt△BOD中,OB=,
∵四边形OABC是矩形,
∴AC=OB=.
故答案为.
本题依托直角坐标系,考查了矩形对角线的性质和勾股定理,解题的关键是连接OB,将求解AC的长转化为求OB的长,这是涉及矩形问题时添加辅助线常用的方法.
12、Q=52﹣8s(0≤s≤6).
【解析】
求余量与行驶距离之间的关系,每行使百千米耗油8升,则行驶s百千米共耗油8s,所以余量为Q=52﹣8s,根据油箱中剩余的油量不能少于4公升求出s的取值范围.
【详解】
解:∵每行驶百千米耗油8升,
∴行驶s百公里共耗油8s,
∴余油量为Q=52﹣8s;
∵油箱中剩余的油量不能少于4公升,
∴52﹣8s≥4,解得s≤6,
∴s的取值范围为0≤s≤6.
故答案为:Q=52﹣8s(0≤s≤6).
本题考查一次函数在是实际生活中的应用,在求解函数自变量范围的时候,一定要考虑变量在本题中的实际意义.
13、2-
【解析】
根据题意先求出a和b,然后代入化简求值即可.
【详解】
解:∵2<<3,
∴a=2,b=﹣2,
∴.
故答案为2﹣.
二次根式的化简求值是本题的考点,用到了实数的大小比较,根据题意求出a和b的值是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、详见解析
【解析】
作∠DAB=∠ ,在射线AB,射线AD分别截取AB=AD=a,再分别以B,D为圆心a为半径画弧,两弧交于点C,连接CD,BC,四边形ABCD即为所求.
【详解】
如图所示.
本题考查作图-复杂作图,菱形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.
15、36πcm2
【解析】
用大圆的面积减去4个小圆的面积即可得到剩余阴影部分的面积,分解因式然后把R和r的值代入计算出对应的代数式的值.
【详解】
阴影部分面积=πR2-4πr2
=π(R2-4r2)
=π(R-2r)(R+2r)
=π×﹙6.8+2×1.6﹚×﹙6.8-2×1.6﹚
=36π(cm2).
本题考查因式分解的运用,看清题意利用圆的面积计算公式列出代数式,进一步利用提取公因式法和平方差公式因式分解解决问题.
16、10+
【解析】
先运用勾股定理求出AC的长度,从而利用勾股定理的逆定理判断出△ABC是直角三角形,然后可将S四边形ABCD=S△ABC+S△ACD进行求解.
【详解】
解:在△ACD中,AC⊥CD,AD=2,∠D=30°,
∴AC=,
∴CD=,
在△ABC中,AB2+BC2=42+52=41,AC2=41,
∴AB2+BC2=AC2,
∴△ABC是直角三角形,且∠ABC=90°,
∴S四边形ABCD=S△ABC+S△ACD=AB·BC+AC·CD=10+.
本题考查了勾股定理及其逆定理,解答本题的关键是判断出△ABC是直角三角形.
17、见解析
【解析】
试题分析:根据正方形的性质可得AD=DC,∠A=∠DCF=90°,再根据DE⊥DF得出∠1=∠2,从而说明三角形ADE和△CDF全等.
试题解析:∵四边形ABCD是正方形, ∴ AD=CD ,∠A=∠DCF=90°
又∵DF⊥DE, ∴∠1+∠3=∠2+∠3 ∴∠1=∠2
∴△DAE≌△DCE ∴DE=DF
考点:(1)、正方形的性质;(2)、三角形全等判定
18、证明见解析
【解析】
由平行四边形的性质可知AD=BC,∠DAE=∠BCF,由垂直的定义可知∠DEA=∠BFC=90°,由全等三角形的判定方法可知△AED≌△CFB,进而得到BF=DE.
【详解】
∵四边形ABCD是平行四边形,
∴AD=BC,∠DAE=∠BCF,
∵DE⊥AC于E,BF⊥AC于F,
∴∠DEA=∠BFC=90°.
在△AED和△BFC中,
,
∴△AED≌△CFB,
∴BF=DE.
本题考查了平行四边形的性质,以及全等三角形的性质与判定,是中考常见的题目.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
利用一次函数图象上点的坐标特征及正方形的性质可得出点B1,B2,B3,B4,B5的坐标,根据点的坐标的变化可找出变化规律“点Bn的坐标为(2n-1,2n-1)(n为正整数)”,再代入n=2019即可得出结论.
【详解】
当x=0时,y=x+1=1,
∴点A1的坐标为(0,1).
∵四边形A1B1C1O为正方形,
∴点B1的坐标为(1,1),点C1的坐标为(1,0).
当x=1时,y=x+1=2,
∴点A1的坐标为(1,2).
∵A2B2C2C1为正方形,
∴点B2的坐标为(3,2),点C2的坐标为(3,0).
同理,可知:点B3的坐标为(7,4),点B4的坐标为(15,8),点B5的坐标为(31,16),…,
∴点Bn的坐标为(2n-1,2n-1)(n为正整数),
∴点B2019的坐标为(22019-1,22018).
故答案为22019-1.
本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“点Bn的坐标为(2n-1,2n-1)(n为正整数)”是解题的关键.
20、④
【解析】
根据菱形的判定方法、矩形的判定方法及正方形的判定方法依次判断后即可解答.
【详解】
①根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,四边形ABCD是菱形,①正确;
②根据对角线互相垂直的平行四边形是菱形可知::四边形ABCD是平行四边形,当AC⊥BD时,四边形ABCD是菱形,②正确;
③根据有一个角是直角的平行四边形是矩形可知③正确;
④根据对角线相等的平行四边形是矩形可知,当AC=BD时,平行四边形ABCD是矩形,不是正方形,④错误;
综上,不正确的为④.
故答案为④.
本题考查了菱形、矩形及正方形的判定方法,熟练运用菱形、矩形及正方形的判定方法是解决问题的关键.
21、1
【解析】
根据分式方程无解,得到1−x= 0,求出x的值,分式方程去分母转化为整式方程,将x的值代入整式方程计算即可求出m的值.
【详解】
解:分式方程去分母得:m=2(1−x)+1,
由分式方程无解,得到1−x=0,即x=1,
代入整式方程得:m=1.
故答案为:1.
此题考查了分式方程的解,将分式方程转化为整式方程是解本题的关键.
22、(-2,-3).
【解析】
根据在平面直角坐标系中,关于x轴对称的两个点的横坐标相同,纵坐标相反即可得出答案.
解:点A(-2,3)关于x轴对称的点B的坐标是(-2,-3).
故答案为(-2,-3).
23、矩形是对角线相等的平行四边形
【解析】
把命题的条件和结论互换就得到它的逆命题。
【详解】
命题”两条对角线相等的平行四边形是矩形“的逆命题是矩形是两条对角线相等的平行四边形,
故答案为:矩形是两条对角线相等的平行四边形。
本题考查命题与逆命题,熟练掌握之间的关系是解题关键.
二、解答题(本大题共3个小题,共30分)
24、证明见解析
【解析】
由题意即可推出DN∥BM,通过求证△ADN≌△CBM即可推出DN=BM,便知四边形BMDN是平行四边形.
【详解】
证明:∵BM⊥AC,DN⊥AC,
∴∠DNA=∠BMC=90°,
∴DN∥BM,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠DAN=∠BCM,
∴△ADN≌△CBM,
∴DN=BM,
∴四边形BMDN是平行四边形.
本题主要考查平行四边形的判定与性质、全等三角形的判定与性质,熟悉相关性质是解题的关键.
25、 (1)证明见解析;(2)1.5.
【解析】
(1)首先根据已知条件可判定四边形OCED是平行四边形,然后根据正方形对角线互相平分的性质,可判定四边形OCED是菱形,又根据正方形的对角线互相垂直,即可判定四边形OCED是正方形;
(2)首先连接EO,并延长EO交AB于点F,根据已知条件和(1)的结论,可判定EF即为点E到AB的距离,即为EO和OF之和,根据勾股定理,可求出AD和CD,即可得解.
【详解】
解:(1)∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形.
∵四边形ABCD是正方形,
∴AC=BD, ,
∴OC=OD.
∴四边形OCED是菱形.
∵AC⊥BD,
∴∠COD=90°.
∴四边形OCED是正方形.
(2)解:连接EO,并延长EO交AB于点F,如图所示
由(1)中结论可得,OE=CD
又∵正方形ABCD,,AD=CD,OF⊥AB
∴
∴AD=CD=1,
∴
∴
EF即为点E到AB的距离,
故答案为1.5.
此题主要考查正方形的判定和利用正方形的性质求解线段的长度,熟练运用即可解题.
26、(1)y=1﹣x;(2)0<x<1.
【解析】
(1)直接利用矩形周长求法得出y与x之间的函数关系式;
(2)利用矩形的性质分析得出答案.
【详解】
(1)∵矩形周长为18,其中一条边长为x,设另一边长为y,
∴2(x+y)=18,
则y=1﹣x;
(2)由题意可得:1﹣x>0,
解得:0<x<1.
此题主要考查了函数关系式以及自变量的取值范围,正确得出函数关系式是解题关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份江苏省盐城响水县联考2025届九上数学开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省盐城市名校2024年九上数学开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省盐城市联谊学校2025届数学九上开学统考试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。