江苏省盐城市名校2024年九上数学开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有( )
A.2个B.3个C.4个D.1个
2、(4分)如图,在框中解分式方程的4个步骤中,根据等式基本性质的是( )
A.①③B.①②C.②④D.③④
3、(4分)如图,在中,,,,是边上的动点,,,则的最小值为( )
A.B.C.5D.7
4、(4分)某中学书法兴趣小组10名成员的年龄情况如下表:
则该小组成员年龄的众数和中位数分别是( )
A.15,15B.16,15C.15,17D.14,15
5、(4分)若式子有意义,则x的取值范围是( )
A.B.C.D.
6、(4分)已知一次函数y=(2m﹣1)x+3,如果函数值y随x的增大而减小,那么m的取值范围为( )
A.m<2B.C.D.m>0
7、(4分)下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B.C.D.
8、(4分)甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是_____.
10、(4分)将分别写有“绿色闵行”、“垃圾分类”、“要先行”的三张大小、质地相同的卡片随机排列,那么恰好排列成“绿色闵行垃圾分类要先行”的概率是__________.
11、(4分)内角和等于外角和2倍的多边形是__________边形.
12、(4分)如图所示,矩形纸片ABCD中,AB=4cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,则AF的长为_____.
13、(4分)定义运算“”:a*b=a-ab,若,,a*b,则x的值为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,一次函数的图象与正比例函数的图象交于点,与轴交于点,且点的纵坐标为4,.
(1)求一次函数的解析式;
(2)将正比例函数的图象向下平移3个单位与直线交于点,求点的坐标.
15、(8分)如图,直线y=3x与反比例函数y=(k≠0)的图象交于A(1,m)和点B.
(1)求m,k的值,并直接写出点B的坐标;
(2)过点P(t,0)(-1≤t≤1)作x轴的垂线分别交直线y=3x与反比函数y=(k≠0)的图象于点E,F.
①当t=时,求线段EF的长;
②若0<EF≤8,请根据图象直接写出t的取值范围.
16、(8分)如图:在中,平分,且,于点,于点.
(1)求证:;
(2)若,,求的长.
17、(10分) “五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.
[来
根据以上信息,解答下列问题:
(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出,关于的函数表达式;
(2)请你帮助小明计算并选择哪个出游方案合算.
18、(10分)直线MN与x轴、y轴分别交于点M、N,并且经过第二、三、四象限,与反比例函数y=(k<0)的图象交于点A、B,过A、B两点分别向x轴、y轴作垂线,垂足为C、D、E、F,AD与BF交于G点.
(1)比较大小:S矩形ACOD S矩形BEOF(填“>,=,<”).
(2)求证:①AG•GE=BF•BG;
②AM=BN;
(3)若直线AB的解析式为y=﹣2x﹣2,且AB=3MN,则k的值为 .
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)因式分解:___________.
20、(4分)若x+y=1,xy=-7,则x2y+xy2=_____________.
21、(4分)已知数据a1,a2,a3,a4,a5的平均数是m,且a1>a2>a3>a4>a5>0,则数据a1,a2,a3,﹣3,a4,a5的平均数和中位数分别是_____,_____.
22、(4分)分式方程有增根,则m=_____________.
23、(4分)函数 yl=" x" ( x ≥0 ) ,( x > 0 )的图象如图所示,则结论:①两函数图象的交点A的坐标为(3 ,3 ) ②当 x > 3时,③当 x =1时, BC = 8
④当 x 逐渐增大时, yl随着 x 的增大而增大,y2随着 x 的增大而减小.其中正确结论的序号是_ .
二、解答题(本大题共3个小题,共30分)
24、(8分)某体育用品商场采购员要到厂家批发购买篮球和排球共个,篮球个数不少于排球个数,付款总额不得超过元,已知两种球厂的批发价和商场的零售价如下表. 设该商场采购个篮球.
(1)求该商场采购费用(单位:元)与(单位:个)的函数关系式,并写出自变最的取值范围:
(2)该商场把这个球全都以零售价售出,求商场能获得的最大利润;
(3)受原材料和工艺调整等因素影响,采购员实际采购时,低球的批发价上调了元/个,同时排球批发价下调了元/个.该体有用品商场决定不调整商场零售价,发现将个球全部卖出获得的最低利润是元,求的值.
25、(10分)我市从 2018 年 1 月 1 日开始,禁止燃油助力车上路,于是电动自 行车的市场需求量日渐增多.某商店计划最多投入 8 万元购进 A、B 两种型号的 电动自行车共 30 辆,其中每辆 B 型电动自行车比每辆 A 型电动自行车多 500 元.用 5 万元购进的 A 型电动自行车与用 6 万元购进的 B 型电动自行车数量一 样.
(1)求 A、B 两种型号电动自行车的进货单价;
(2)若 A 型电动自行车每辆售价为 2800 元,B 型电动自行车每辆售价为 3500 元,设该商店计划购进 A 型电动自行车 m 辆,两种型号的电动自行车全部销售 后可获利润 y 元.写出 y 与 m 之间的函数关系式;
(3)该商店如何进货才能获得最大利润;此时最大利润是多少元.
26、(12分)先化简,再求值:,其中x为不等式组的整数解.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据题中条件,结合图形及角平分线的性质得到结论,与各选项进行比对,排除错误答案,选出正确的结果.
【详解】
∵AD平分∠BAC
∴∠DAC=∠DAE
∵∠C=90°,DE⊥AB
∴∠C=∠E=90°
∵AD=AD
∴△DAC≌△DAE
∴∠CDA=∠EDA
∴①AD平分∠CDE正确;
无法证明∠BDE=60°,
∴③DE平分∠ADB错误;
∵BE+AE=AB,AE=AC
∴BE+AC=AB
∴④BE+AC=AB正确;
∵∠BDE=90°-∠B,∠BAC=90°-∠B
∴∠BDE=∠BAC
∴②∠BAC=∠BDE正确.
故选:B.
考查了角平分线的性质,解题关键是灵活运用其性质进行分析.
2、A
【解析】
根据等式的性质1,等式的两边都加或减同一个整式,结果不变,根据等式的性质1,等式的两边都乘或除以同一个不为零的整式,结果不变,可得答案.
【详解】
①根据等式的性质1,等式的两边都乘同一个不为零的整式x﹣1,结果不变;
②根据去括号法则;
③根据等式的性质1,等式的两边都加同一个整式3﹣x,结果不变;
④根据合并同类项法则.
根据等式基本性质的是①③.
故选A.
本题考查了等式的性质,利用了等式的性质1,等式的性质1.
3、B
【解析】
先由矩形的判定定理推知四边形PECF是矩形;连接PC,则PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值.
【详解】
如图,连接PC.
∵在△ABC中,AC=6,BC=8,AB=10,
∴AB2=AC2+BC2,
∴∠C=90°.
又∵PE⊥AC于点E,PF⊥BC于点F.
∴∠CEP=∠CFP=90°,
∴四边形PECF是矩形.
∴PC=EF.
∴当PC最小时,EF也最小,
即当PC⊥AB时,PC最小,
∵BC•AC=AB•PC,即PC=,
∴线段EF长的最小值为.
故选B.
本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PC⊥AB时,PC取最小值是解答此题的关键.
4、A
【解析】
10名成员的年龄中,15岁的人数最多,因此众数是15岁,从小到大排列后,处在第5,6位两个数的平均数是15岁,因此中位数是15岁.
【详解】
解:15岁出现的次数最多,是4次,因此众数是15岁,从小到大排列后处在第5、6位的都是15,因此中位数是15岁.
故选:A.
本题考查中位数、众数的意义及求法,出现次数最多的数是众数,从小到大排列后处在中间位置的一个或两个数的平均数是中位数.
5、C
【解析】
根据二次根式的被开方数是非负数列出不等式x-1≥0,通过解该不等式即可求得x的取值范围.
【详解】
解:根据题意,得x-1≥0,
解得,x≥1.
故选:C.
此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
6、C
【解析】
根据一次函数的性质,当函数值y随自变量x的增大而减小时,那么k<0,由此可得不等式2m﹣1<0,解不等式即可求得m的取值范围.
【详解】
∵函数值y随自变量x的增大而减小,
∴2m﹣1<0,
∴m<.
故选C.
本题考查了一次函数的性质,熟练运用一次函数的性质是解决问题的关键.
7、C
【解析】
在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合的图形叫做中心对称图形,根据这两点即可判断.
【详解】
解:A、是轴对称图形,不是中心对称图形.故A错误;
B、是轴对称图形,不是中心对称图形.故B错误;
C、是轴对称图形,也是中心对称图形.故C正确;
D、不是轴对称图形,是中心对称图形.故D错误.
故选:C.
本题主要考查的是轴对称图形和中心对称图形的定义,掌握这两个知识点是解题的关键.
8、C
【解析】
由实际问题抽象出方程(行程问题).
【分析】∵甲车的速度为千米/小时,则乙甲车的速度为千米/小时
∴甲车行驶30千米的时间为,乙车行驶40千米的时间为,
∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得.故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2+
【解析】
试题分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.
∵PE⊥AB,AB=2,半径为2,
∴AE=AB=,PA=2, 根据勾股定理得:PE=1,
∵点A在直线y=x上,
∴∠AOC=45°,
∵∠DCO=90°,
∴∠ODC=45°,
∴△OCD是等腰直角三角形,
∴OC=CD=2,
∴∠PDE=∠ODC=45°,
∴∠DPE=∠PDE=45°,
∴DE=PE=1,
∴PD=
∵⊙P的圆心是(2,a),
∴a=PD+DC=2+.
本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.
10、
【解析】
用树状图将所有的情况数表示出来,然后找到恰好排列成“绿色闵行垃圾分类要先行”的情况数,利用所求情况数与总数之比求概率即可.
【详解】
由树状图可知,总共有6种情况,其中恰好排列成“绿色闵行垃圾分类要先行”的情况只有1种,所以恰好排列成“绿色闵行垃圾分类要先行”的概率为 .
故答案为: .
本题主要考查用树状图求随机事件的概率,掌握树状图的画法及概率公式是解题的关键.
11、六
【解析】
设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.
【详解】
解:设多边形有n条边,由题意得:
180(n-2)=360×2,
解得:n=6,
故答案为:六.
本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).
12、5cm
【解析】
设AF=xcm,则DF=(8﹣x)cm,由折叠的性质可得DF=D′F,在Rt△AD′F中,由勾股定理可得x2=42+(8﹣x) 2,解方程求的x的值,即可得AF的长.
【详解】
设AF=xcm,则DF=(8﹣x)cm,
∵矩形纸片ABCD中,AB=4cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,
∴DF=D′F,
在Rt△AD′F中,∵AF2=AD′2+D′F2,
∴x2=42+(8﹣x) 2,
解得:x=5(cm).
故答案为:5cm
本题考查了矩形的折叠问题,利用勾股定理列出方程x2=42+(8﹣x) 2是解决问题的关键.
13、±2
【解析】
先根据新定义得出一元二次方程,求出方程的解即可.
【详解】
解:由题意可得:x+1-(x+1)•x=-3,
-x2=-4,
解得:x=±2,
故答案为:±2
本题考查了解一元二次方程的应用,解此题的关键是能根据已知得出一元二次方程,题目比较新颖,难度适中.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)
【解析】
(1)由A点纵坐标为4,代入正比例函数解析式,求得A点坐标,由OB=6,求得B点坐标,然后利用待定系数法求一次函数解析式;
(2)由平移性质求得平移后解析式为,然后与联立方程组求两直线的交点坐标即可.
【详解】
解:(1)∵点在反比例函数的图象上,且点的纵坐标为4,
∴.解得:
∴
∵,∴
∵、在的图象上
∴解得:
∴一次函数的解析式为:
(2)∵向下平移3个单位的直线为:
∴解得:
∴
本题考查一次函数的性质,掌握待定系数法,利用数形结合思想解题是关键.
15、(2)m=2;k=2;B(-2,-2);(2)①EF=8,②-2
(2)把A的坐标代入正比例函数即可得出m的值,把A的坐标代入反比例函数的解析式即可得到k的值,根据对称性即可得到B的坐标;
(2)①把t的值分别代入正比例函数和反比例函数,即可得出结论;
②根据图象即可得出结论.
【详解】
(2)解:∵直线y=2x与反比例函数y= (k≠0的常数)的图象交于A(2,m),∴m=2,k=2.根据对称性可得:B(-2,-2).
(2)解:①当t=时,y=2x=2,y==9,∴EF=9-2=8;
②由图象知:-2<t≤-或 ≤t<2.
本题考查了一次函数与反比例函数的综合.数形结合是解答本题的关键.
16、(1)证明见解析;(2)
【解析】
(1)根据角平分线的性质得到DE=DF,证明Rt△BDE≌Rt△CDF,根据全等三角形的性质得到∠B=∠C,根据等腰三角形的判定定理证明;
(2)根据直角三角形的性质求出AC,根据勾股定理计算即可.
【详解】
(1)证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,
在Rt△BDE和Rt△CDF中, ,
∴Rt△BDE≌Rt△CDF,
∴∠B=∠C,
∴AB=AC;
(2)∵AD平分∠BAC,BD=CD,
∴AD⊥BC,
∵∠DAC=30°,
∴AC=2DC=8,
∴AD=.
本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.
17、(1)y1=15x+80(x≥0);y2=30x(x≥0);(2)当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
【解析】
试题分析:(1)根据函数图象中的信息,分别运用待定系数法求得y1,y2关于x的函数表达式即可;
(2)当y1=y2时,15x+80=30x,当y>y2时,15x+80>30x,当y1
把点(1,95)代入,可得
95=k1+80,
解得k1=15,
∴y1=15x+80(x≥0);
设y2=k2x,
把(1,30)代入,可得
30=k2,即k2=30,
∴y2=30x(x≥0);
(2)当y1=y2时,15x+80=30x,
解得x=;
当y1>y2时,15x+80>30x,
解得x<;
当y1<y2时,15x+80>30x,
解得x>;
∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
考点:1.用待定系数法求一次函数关系式;2.一次函数的应用.
18、(1)=;(2)①见解析,②见解析;(3)﹣1.
【解析】
(1)根据反比例函数的比例系数的几何意义即可作出判断;
(2)①设A的横坐标是a,B的横坐标是b,分别代入y=,则A的坐标是(a,),B的坐标是(b,),利用a、b表示出AG、GE、BF、BG的长,即可证得;
②求得直线AB的解析式,即可求得M的坐标,即可证明CM=BF,即可证得△ACM≌△NFB,根据全等三角形的对应边相等,即可证得;
(3)根据AM=BN,且AB=3MN,可以得到AM=BN=MN,则OF=2ON,OM=BF,在y=﹣2x﹣2中,求得M、N的坐标,即可求得B的坐标,代入反比例函数解析式即可求得k的值.
【详解】
(1)根据反比例函数k的几何意义可得:S矩形ACOD=S矩形BEOF=|k|,
故答案为:=;
(2)①设A的横坐标是a,B的横坐标是b,分别代入y=,则A的坐标是(a,),B的坐标是(b,),
则AG=b﹣a,GE=,BF=b,BG=﹣,
则AG•GE=(b﹣a)•=,
BF•BG=b(﹣)=,
∴AG•GE=BF•BG;
②设过A、B的直线的解析式是y=mx+n,则,
解得:,
则函数的解析式是:y=﹣x+,
令y=0,解得:x=a+b,
则M的横坐标是a+b,
∴CM=a+b﹣a=b,
∴CM=BF,
则△ACM≌△NFB,
∴AM=BN;
(3)∵AM=BN,且AB=3MN,
∴AM=BN=MN,
∴ON=NF,
在y=﹣2x﹣2中,令x=0,解得:y=﹣2,
则ON=2,
令y=0,解得:x=﹣1,则OM=1,
∴OF=2ON=1,OM=BF=1
∴B的坐标是(1,﹣1),
把(1,﹣1)代入y=中,得:k=﹣1,
故答案为:﹣1.
本题考查的是反比例函数与几何综合题,涉及了反比例函数k的几何意义,待定系数法,全等三角形的判定与性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
直接提取公因式2,进行分解因式即可.
【详解】
2(a-b).
故答案为:2(a-b).
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
20、﹣7
【解析】
∵x+y=1,xy=﹣7,
∴x2y+xy2=xy(x+y)=-7×1=-7.
21、 ,
【解析】
根据五个数的平均数为m,可以表示五个数的和为5m,后来加上一个数﹣3,那么六个数的和为5m﹣3,因此六个数的平均数为(5m﹣3)÷6,将六个数从小到大排列后,处在第3、4位的两个数的平均数为(a4+a3)÷1,因此中位数是(a4+a3)÷1.
【详解】
a1,a1,a3,a4,a5的平均数是m,则a1+a1+a3+a4+a5=5m,
数据a1,a1,a3,﹣3,a4,a5的平均数为(a1+a1+a3﹣3+a4+a5)÷6=,
数据a1,a1,a3,﹣3,a4,a5按照从小到大排列为:﹣3, a5,a4,a3,a1, a1,处在第3、4位的数据的平均数为 ,
故答案为:,.
考查平均数、中位数的意义及计算方法,解题关键在于灵活应用平均数的逆运算.
22、1
【解析】
分式方程去分母得:x+x﹣1=m, 根据分式方程有增根得到x﹣1=0,即x=1,
将x=1代入整式方程得:1+1﹣1=m,
则m=1,
故答案为1.
23、①③④
【解析】
逐项分析求解后利用排除法求解.①可列方程组求出交点A的坐标加以论证.②由图象分析论证.③根据已知先确定B、C点的坐标再求出BC.④由已知和函数图象分析.
解:①根据题意列解方程组,
解得,;
∴这两个函数在第一象限内的交点A的坐标为(3,3),正确;
②当x>3时,y1在y2的上方,故y1>y2,错误;
③当x=1时,y1=1,y2==9,即点C的坐标为(1,1),点B的坐标为(1,9),所以BC=9-1=8,正确;
④由于y1=x(x≥0)的图象自左向右呈上升趋势,故y1随x的增大而增大,
y2=(x>0)的图象自左向右呈下降趋势,故y2随x的增大而减小,正确.
因此①③④正确,②错误.
故答案为①③④.
本题考查了一次函数和反比例函数图象的性质.解决此类问题的关键是由已知和函数图象求出正确答案加以论证.
二、解答题(本大题共3个小题,共30分)
24、(1),;(2)商场能获得的最大利润为元;(3)的值为.
【解析】
(1)设该商场采购个篮球,(100-x)个排球,根据表格写出函数关系式即可,根据题意列出关于x的不等式组,进一步确定自变量x的取值范围;
(2)设该商场获得利润元,先求出一个篮球及排球各自所获利润,再乘以数量即可,根据函数的变化情况即可确定最大利润;
(3)先列出利润W关于m的表达式,分情况讨论一次性系数的取值,根据最低利润确定m的值.
【详解】
解:
设该商场获得利润元
随的增大而增大
当时,
即商场能获得的最大利润为元
①当时,即时,随的增大而增大
当时,
解得
不符合题意,舍去;
②当时,即,舍去
③当时,即,随的增大而减小
当时,
解得:,符合题意
即的值为.
本题综合考查了一次函数解析式及不等式在实际问题中的应用,正确理解题意,把握题中数量关系是解题的关键.
25、(1)A、B 两种型号电动自行车的进货单价分别为 2500 元 3000 元;(2)y=﹣200m+15000(20≤m≤30);(3)m=20 时,y 有最大值,最大值为 11000 元.
【解析】
(1)设 A、B 两种型号电动自行车的进货单价分别为 x 元、(x+500)元,根据用 5 万元购进的 A 型电动自行车与用 6 万元购进的 B 型电动自行车数量一 样,列分式方程即可解决问题;
(2)根据总利润=A 型的利润+B 型的利润,列出函数关系式即可;
(3)利用一次函数的性质即可解决问题.
【详解】
解:(1)设 A、B 两种型号电动自行车的进货单价分别为 x 元、(x+500) 元,
由题意:=,
解得:x=2500,
经检验:x=2500 是分式方程的解,
答:A、B 两种型号电动自行车的进货单价分别为 2500 元 3000 元;
(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30);
(3)∵y=300m+500(30﹣m)=﹣200m+15000,
∵﹣200<0,20≤m≤30,
∴m=20 时,y 有最大值,最大值为 11000 元.
本题考查了分式方程的应用,一次函数的应用等知识,读懂题意,找准等量关系列出方程,找准数量关系列出函数关系是解题的关键.
26、当x=2时,原式=
【解析】
根据分式的加法和除法可以化简题目中的式子,然后从不等式组的解集中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.
【详解】
解:
,
去分母得:,整理得:,
,整理得:,
则,
因为x为整数,则x=-1或0或1或2,
当x=-1、0、1时分式无意义舍去,
故答案为当x=2时,原式=.
本题考查分式的化简求值、一元一次不等式组的整数解,分式有意义的条件,解答本题的关键是明确分式化简求值的方法,舍去分式无意义的解.
题号
一
二
三
四
五
总分
得分
年龄/岁
14
15
16
17
人数
3
4
2
1
品名
厂家批发价/元/个
商场零售价/元/个
篮球
排球
江苏省盐城市2025届九上数学开学质量检测模拟试题【含答案】: 这是一份江苏省盐城市2025届九上数学开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖北省孝感市名校2025届数学九上开学调研模拟试题【含答案】: 这是一份湖北省孝感市名校2025届数学九上开学调研模拟试题【含答案】,共25页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2025届重庆市长寿区名校数学九上开学调研模拟试题【含答案】: 这是一份2025届重庆市长寿区名校数学九上开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。