江苏省南通市海安市曲塘中学2025届九上数学开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)对于数据:80,88,85,85,83,83,1.下列说法中错误的有( )
①这组数据的平均数是 1;②这组数据的众数是 85;③这组数据的中位数是 1;④这组数据的方差是 2.
A.1 个B.2 个C.3 个D.4 个
2、(4分)已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为
A.1B.﹣1C.2D.﹣2
3、(4分)已知反比例函数y=kx-1的图象过点A(1,-2),则k的值为( )
A.1B.2C.-2D.-1
4、(4分)如图,在梯形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于E,∠BAE=∠EAC,O是AC的中点,AD=DC=2,下面结论:①AC=2AB;②AB=;③S△ADC=2S△ABE;④BO⊥AE,其中正确的个数是( )
A.1B.2C.3D.4
5、(4分)如图,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱的底面点A有一只蚂蚁,它想吃到上底面上与点A相对的点B的食物,需要爬行的最短路程是(π取3)( )
A.10cmB.12mC.14cmD.15cm
6、(4分)甲袋装有4个红球和1个黑球,乙袋装有6个红球、4个黑球和5个白球.这些球除了颜色外没有其他区别,分别搅匀两袋中的球,从袋中分别任意摸出一个球,正确说法是( )
A.从甲袋摸到黑球的概率较大
B.从乙袋摸到黑球的概率较大
C.从甲、乙两袋摸到黑球的概率相等
D.无法比较从甲、乙两袋摸到黑球的概率
7、(4分)如图,在矩形ABCD中,AB=6,AD=8,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为( )
A.8B.9C.10D.2
8、(4分)下面四个应用图标中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为 .
10、(4分)分式与的最简公分母是__________.
11、(4分)直线y=x+2与x轴的交点坐标为___________.
12、(4分)数据5,5,6,6,6,7,7的众数为_____
13、(4分)计算:(−)2=________;=_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知函数的图象为直线,函数的图象为直线,直线、分别交轴于点和点,分别交轴于点和,和相交于点
(1)填空: ;求直线的解析式为 ;
(2)若点是轴上一点,连接,当的面积是面积的2倍时,请求出符合条件的点的坐标;
(3)若函数的图象是直线,且、、不能围成三角形,直接写出的值.
15、(8分)某花卉基地出售文竹和发财树两种盆栽,其单价为:文竹盆栽12元/盆,发财树盆栽15元/盆。如果同一客户所购文竹盆栽的数量大于800盆,那么每盆文竹可降价2元.某花卉销售店向花卉基地采购文竹400盆~900盆,发财树若干盆,此销售店本次用于采购文竹和发财树恰好花去12000元.然后再以文竹15元,发财树20元的单价实卖出.若设采购文竹x盆,发财树y盆,毛利润为W元.
(1)当时,y与x的数量关系是_______,W与x的函数解析式是_________;
当时,y与x的数量关系是___________,W与x的函数解析式是________;
(2)此花卉销售店应如何采购这两种盆栽才能使获得毛利润最大?
16、(8分)反比例函数的图像经过、两点.
(1)求m,n的值;
(2)根据反比例图像写出当时,y的取值范围.
17、(10分)已知关于x的一元二次方程
(1)求证:方程总有两个实数根;
(2)若方程有一个根为负数,求m的取值范围。
18、(10分)如图,四边形 ABCD 是正方形,点 E是 BC边上任意一点, AEF 90°,且EF 交正方形外角的平分线 CF 于点 F.求证:AE=EF.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一次函数的图象不经过__________象限
20、(4分)将二次根式化为最简二次根式的结果是________________
21、(4分)如图,A,B的坐标为(1,0),(0,2),若将线段AB平移至A1B1,则a﹣b的值为____.
22、(4分)数据﹣2、﹣1、0、1、2的方差是_____.
23、(4分)一次函数 的图象如图所示,则关于的不等式的解集为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某学校为了创建书香校园,去年购买了一批图书.其中科普书的单价比文学书的单价多8元,用1800元购买的科普书的数量与用l000元购买的文学书的数量相同.
(1)求去年购买的文学书和科普书的单价各是多少元;
(2)这所学校今年计划再购买这两种文学书和科普书共200本,且购买文学书和科普书的总费用不超过2088元.今年文学书的单价比去年提高了20%,科普书的单价与去年相同,且每购买1本科普书就免费赠送1本文学书,求这所学校今年至少要购买多少本科普书?
25、(10分)在实施漓江补水工程中,某水库需要将一段护坡土坝进行改造.在施工质量相同的情况下,甲、乙两施工队给出的报价分别是:甲施工队先收启动资金1000元,以后每填土1立方米收费20元,乙施工队不收启动资金,但每填土1立方米收费25元.
(1)设整个工程需要填土为X立方米,选择甲施工队所收的费用为Y甲元,选择乙施工队所收的费用为Y乙元.请分别写出Y甲、Y乙、关于X的函数关系式;
(2)如图,土坝的横截面为梯形,现将背水坡坝底加宽2米,即BE=2米,已知原背水坡长AB=4,土坝与地面的倾角∠ABC=60度,要改造100米长的护坡土坝,选择哪家施工队所需费用较少?
(3)如果整个工程所需土方的总量X立方米的取值范围是100≤X≤800,应选择哪家施工队所需费用较少?
26、(12分)如图,菱形ABCD的边长为2,,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为_____.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由平均数公式可得这组数据的平均数为1;
在这组数据中83出现了2次,85出现了2次,其他数据均出现了1次,所以众数是83和85;将这组数据从小到大排列为:80、83、83、1、85、85、88,可得其中位数是1;
其方差为,
故选B.
2、A
【解析】
试题分析:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立,因此,
∵x=3是原方程的根,∴将x=3代入原方程,即32﹣3k﹣6=0成立,解得k=1.故选A.
3、C
【解析】
直接把点(1,-2)代入反比例函数y= 即可得出结论.
【详解】
∵反比例函数y=的图象过点A(1,−2),
∴−2= ,
解得k=−2.
故选C.
此题考查反比例函数图象上点的坐标特征,解题关键在于把已知点代入解析式
4、D
【解析】
根据条件AD∥BC,AE∥CD可以得出四边形AECD是平行四边形,由AD=CD可以得出四边形AECD是菱形,就有AE=EC=CD=AD=2,就有∠2=∠1,有∠1=∠2,∠ABC=90°,可以得出∠1=∠2=∠1=10°,有∠BAC=60°,可以得出AC=2AB,有O是AC的中点,就有BO=AO=CO=AC.就有△ABO为等边三角形,∠1=∠2就有AE⊥BO,由∠1=10°,∠ABE=90°,就有BE=AE=1,由勾股定理就可以求出AB的值,从而得出结论.
【详解】
∵AD∥BC,AE∥CD,
∴四边形AECD是平行四边形.
∵AD=DC,
∴四边形AECD是菱形,
∴AE=EC=CD=AD=2,
∴∠2=∠1.
∵∠1=∠2,
∴∠1=∠2=∠1.
∵∠ABC=90°,
∴∠1+∠2+∠1=90°,
∴∠1=∠2=∠1=10°,
∴BE=AE,AC=2AB.本答案正确;
∴BE=1,
在Rt△ABE中,由勾股定理,得
AB=.本答案正确;
∵O是AC的中点,∠ABC=90°,
∴BO=AO=CO=AC.
∵∠1=∠2=∠1=10°,
∴∠BAO=60°,
∴△ABO为等边三角形.
∵∠1=∠2,
∴AE⊥BO.本答案正确;
∵S△ADC=S△AEC=,
∵CE=2,BE=1,
∴CE=2BE,
∴S△ACE=,
∴S△ACE=2S△ABE,
∴S△ADC=2S△ABE.本答案正确.
∴正确的个数有4个.
故选D.
本题考查了平行四边形的判定,菱形的判定及性质的运用,直角三角形的性质的性质的运用,勾股定理的运用,三角形的面积公式的运用,等边三角形的性质的运用.解答时证明出四边形AECD是菱形是解答本题的关键
5、D
【解析】
要想求得最短路程,首先要把A和B展开到一个平面内.根据两点之间,线段最短求出蚂蚁爬行的最短路程.
【详解】
解:展开圆柱的半个侧面是矩形,
矩形的长是圆柱的底面周长的一半,即3π≈9,矩形的宽是圆柱的高1.
根据两点之间线段最短,
知最短路程是矩形的对角线AB的长,即AB==15厘米.
故选:D.
此题考查最短路径问题,求两个不在同一平面内的两个点之间的最短距离时,一定要展开到一个平面内.根据两点之间,线段最短.确定要求的长,再运用勾股定理进行计算.
6、B
【解析】
试题分析:根据概率的计算法则可得:甲袋P(摸到黑球)=;乙袋P(摸到黑球)=.根据可得:从乙袋摸到黑球的概率较大.
考点:概率的计算
7、B
【解析】
取BC中点O,连接OE,OF,根据矩形的性质可求OC,CF的长,根据勾股定理可求OF的长,根据直角三角形的性质可求OE的长,根据三角形三边关系可求得当点O,点E,点F共线时,EF有最大值,即EF=OE+OF.
【详解】
解:如图,取BC中点O,连接OE,OF,
∵四边形ABCD是矩形,
∴AB=CD=6,AD=BC=8,∠C=10°,
∵点F是CD中点,点O是BC的中点,
∴CF=3,CO=4,
∴OF==5,
∵点O是Rt△BCE的斜边BC的中点,
∴OE=OC=4,
∵根据三角形三边关系可得:OE+OF≥EF,
∴当点O,点E,点F共线时,EF最大值为OE+OF=4+5=1.
故选:B.
本题考查了矩形的性质,三角形三边关系,勾股定理,直角三角形的性质,找到当点O,点E,点F共线时,EF有最大值是本题的关键.
8、C
【解析】
根据轴对称图形和中心对称图形的概念即可得出.
【详解】
解:A、是轴对称图形,不是中心对称图形,故此选项错误;
B、不是轴对称图形,是中心对称图形,故此选项错误;
C、是轴对称图形,是中心对称图形,故此选项正确;
D、不是轴对称图形,是中心对称图形,故此选项错误;
故选C.
本题考查了中心对称图形与轴对称图形的概念,轴对称图形: 在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形.中心对称图形: 在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,
则AD=1,BF=BC+CF=BC+1,DF=AC,
又∵AB+BC+AC=1,
∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.
考点:平移的性质.
10、
【解析】
分式的最简公分母通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,即可得解.
【详解】
由题意,得
其最简公分母是,
故答案为:.
此题主要考查分式的最简公分母,熟练掌握,即可解题.
11、(-2,0)
【解析】
令纵坐标为0代入解析式中即可.
【详解】
当y=0时,0=x+2,解得:x=-2,
∴直线y=x+2与x轴的交点坐标为(-2,0).
点睛:本题主要考查了一次函数与坐标轴的交点问题,关键在于理解在x轴上的点的纵坐标为0.
12、6
【解析】
根据众数的定义可得结论.
【详解】
解:数据5,5,6,6,6,7,7,其中数字5出现2次,数字6出现3次,数字7出现2次,所以众数为6.
故答案为:6
本题主要考查众数的定义,解题的关键是掌握众数的定义:一组数据中出现次数最多的数据叫做众数.
13、5 π-1
【解析】
根据二次根式的性质计算即可.
【详解】
解:.
故答案为:5,π-1.
本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1),直线的解析式为;(2)点的坐标为或;(3)的值为或或.
【解析】
(1)将点坐标代入中,即可得出结论;将点,坐标代入中,即可得出结论;
(2)先利用两三角形面积关系判断出,再分两种情况,即可得出结论;
(3)分三种情况,利用两直线平行,相等或经过点讨论即可得出结论.
【详解】
解:(1)点在函数的图象上,
,
,
直线过点、,
可得方程组为,
解得,
直线的解析式为;
故答案为:;
(2)是与轴的交点,当时,,
,坐标为,
又的面积是面积的2倍,
第一种情况,当在线段上时,
,
,即,
∴,
坐标,
第二种情况,当在射线上时,
,
,
,
坐标,
点的坐标为或;
(3)、、不能围成三角形,
直线经过点或或,
①直线的解析式为,
把代入到解析式中得:
,
,
②当时,
∵直线的解析式为,
,
③当时,
∵直线的解析式为,
,
即的值为或或.
此题是一次函数综合题,主要考查了坐标轴上点的特点,待定系数法,三角形的面积的求法,用分类讨论的思想解决问题是解本题的关键.
15、(1)当时,(或填),;当时, (或填),;(2)采购文竹900盆,发财树200盆,毛利润最大为5500元
【解析】
(1)根据题意,可直接列出关系式;
(2)根据题意,分情况进行分析,进而得出采购文竹900盆,发财树200盆,毛利润最大为5500元.
【详解】
(1)根据题意,可得
当时,
(或填),
即;
当时,
(或填),
即;
(2)当时,
∵,W随着x的增大而减小
∴当x取400时,,W有最大值3600,
当时,
∵,W随着x的增大而增大
∴当x取900时,,W有最大值5500,
综上所述,采购文竹900盆,发财树200盆,毛利润最大为5500元
此题主要考查一次函数的实际应用,熟练掌握,即可解题.
16、(1),;(2)当时,.
【解析】
(1)将点 , 的坐标分别代入已知函数解析式,列出关于m,n 的方程组,通过解方程=组来求m,n的值即可;
(2) 利用(1)中的反比例函数的解析式画出该函数的图象,根据图象直接回答问题.
【详解】
(1)根据题意,得
解得m=−2,n=−2,即m,n的值都是−2.
(2)由(1)知,反比例函数的解析式为y=−,其图象如图所示:
根据图象知,当−2
本题考查反比例函数的性质,熟练掌握计算法则是解题关键.
17、(1)见解析;(2)
【解析】
(1)根据判别式即可求出答案.
(2)根据公式法即可求出答案两根,然后根据题意列出不等式即可求出答案.
【详解】
(1)证明:
.
∵,即,
∴此方程总有两个实数根.
(2)解:
解得,.
∵此方程有一个根是负数,而,
∴,即.
∴m的取值范围是.
本题考查一元二次方程根的判别式,以及求根公式法解一元二次方程,解题的关键是熟练运用判别式以及一元二次方程的解法,本题属于中等题型.
18、见解析
【解析】
截取BE=BM,连接EM,求出AM=EC,得出∠BME=45°,求出∠AME=∠ECF=135°,求出∠MAE=∠FEC,根据ASA推出△AME和△ECF全等即可.
【详解】
证明:在AB上截取BM=BE,连接ME,
∵∠B=90°,
∴∠BME=∠BEM=45°,
∴∠AME=135°
∵CF是正方形ABCD的外角的角平分线,
∴∠ECF=90°+∠DCF=90°+=135°=∠ECF,
∵AEF 90°
∴∠AEB+=90°
又∠AEB+=90°,
∴
∵AB=BC,BM=BE,
∴AM=EC,
在△AME和△ECF中
,
∴△AME≌△ECF(ASA),
∴AE=EF.
本题考查了正方形的性质,全等三角形的性质和判定,角平分线的定义,关键是推出△AME≌△ECF.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、二
【解析】
根据一次函数的图像即可求解.
【详解】
一次函数过一三四象限,故不经过第二象限.
此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.
20、4
【解析】
直接利用二次根式的性质化简求出答案.
【详解】
,
故答案为:4
此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.
21、1
【解析】
试题解析:由B点平移前后的纵坐标分别为2、4,可得B点向上平移了2个单位,
由A点平移前后的横坐标分别是为1、3,可得A点向右平移了2个单位,
由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,
所以点A、B均按此规律平移,
由此可得a=2,b=2,
故a-b=1.
【点睛】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
22、2
【解析】
根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.
【详解】
由题意可得,
这组数据的平均数是:x= =0,
∴这组数据的方差是: ,
故答案为:2.
此题考查方差,解题关键在于掌握运算法则
23、x≥1
【解析】
由图象得出解集即可.
【详解】
由图象可得再x轴下方,即x≥1的时候,
故答案为: x≥1.
本题考查一次函数图象的性质,关键在于牢记基础知识.
二、解答题(本大题共3个小题,共30分)
24、(1)文学书的单价是1元,科普书的单价是2元;(2) 至少要购买52本科普书.
【解析】
(1)设去年购买的文学书的单价是x元,科普书的单价是(x+8)元,根据“用200元购买的科普书的数量与用l000元购买的文学书的数量相同”列出方程;
(2)设这所学校今年要购买y本科普书,根据“购买文学书和科普书的总费用不超过2088元”列出不等式.
【详解】
解:(1)设去年购买的文学书的单价是x元,科普书的单价是(x+8)元,
根据题意,得.
解得x=1.
经检验 x=1是原方程的解.
当x=1时,x+8=2.
答:去年购买的文学书的单价是1元,科普书的单价是2元;
(2)设这所学校今年要购买y本科普书,
根据题意,得1×(1+20%)(200﹣y﹣y)+2y≤2088
解得y≥52
答:这所学校今年至少要购买52本科普书.
本题考查分式方程的应用和一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.
25、(1)由题意,y甲=1000+20x,y乙=25x;(2)选择甲施工队所需费用较少 (3)见解析
【解析】
分析:(1)、根据题意总费用=每立方米费用乘以立方米数加上额外费用从而得出函数解析式;(2)、过A作AF⊥BC于F,根据直角三角形的面积计算法则得出土方的数量,然后分别求出两个施工队的费用,从而得出答案;(3)、根据不等式的性质求出答案.
详解:(1)由题意,y甲=1000+20x,y乙=25x;
(2)如图,过A作AF⊥BC于F,∵∠ABC=60°,AB=4,∴AF=6,
∴S△ABE=BE•AF=6,∴100米长的护坡土坝的土方的总量为6×100=600,
当x=600时,y甲=13000;y乙=15000,∴选择甲施工队所需费用较少;
(3)①当y甲=y乙,则1000+20x=25x,∴x=200,
②当x>200时,y甲<y乙;③当0<x<200时,y甲>y乙.
∴当100<x<200时,选择乙工程队;当x>200时,选择甲工程队;当x=200时,甲乙一样.
点睛:本题主要考查的是一次函数的实际应用以及不等式的应用,属于中等难度的题型.根据题意得出等量关系是解决这个问题的关键.
26、
【解析】
根据ABCD是菱形,找出B点关于AC的对称点D,连接DE交AC于P,则DE就是PB+PE的最小值,根据勾股定理求出即可.
【详解】
解:如图,连接DE交AC于点P,连接DB,
∵四边形ABCD是菱形,
∴点B、D关于AC对称(菱形的对角线相互垂直平分),
∴DP=BP,
∴PB+PE的最小值即是DP+PE的最小值(等量替换),
又∵ 两点之间线段最短,
∴DP+PE的最小值的最小值是DE,
又∵,CD=CB,
∴△CDB是等边三角形,
又∵点E为BC边的中点,
∴DE⊥BC(等腰三角形三线合一性质),
菱形ABCD的边长为2,
∴CD=2,CE=1,
由勾股定理得,
故答案为.
本题主要考查轴对称、最短路径问题、菱形的性质以及勾股定理(两直角边的平方和等于斜边的平方),确定P点的位置是解题的关键.
题号
一
二
三
四
五
总分
得分
江苏省南通市海安市曲塘镇2024年数学九年级第一学期开学统考模拟试题【含答案】: 这是一份江苏省南通市海安市曲塘镇2024年数学九年级第一学期开学统考模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省南通市海安市曲塘镇2023-2024学年数学九上期末达标检测模拟试题含答案: 这是一份江苏省南通市海安市曲塘镇2023-2024学年数学九上期末达标检测模拟试题含答案,共7页。
江苏省南通市海安市曲塘中学2023-2024学年八上数学期末调研试题含答案: 这是一份江苏省南通市海安市曲塘中学2023-2024学年八上数学期末调研试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列说法正确的是等内容,欢迎下载使用。