![江苏省无锡市小黄卷2024年九上数学开学综合测试模拟试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16284991/0-1729727083927/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省无锡市小黄卷2024年九上数学开学综合测试模拟试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16284991/0-1729727084013/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省无锡市小黄卷2024年九上数学开学综合测试模拟试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16284991/0-1729727084043/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省无锡市小黄卷2024年九上数学开学综合测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是矩形,则四边形ABCD需要满足的条件是
A.B.C.D.
2、(4分)计算×的结果是( )
A.B.8C.4D.±4
3、(4分)已知点A(﹣2,a),B(﹣1,b),C(3,c)都在函数y=﹣的图象上,则a、b、c的大小关系是( )
A.a<b<cB.b<a<cC.c<b<aD.c<a<b
4、(4分)下列调查适合抽样调查的是( )
A.审核书稿中的错别字
B.对某校八一班同学的身高情况进行调查
C.对某校的卫生死角进行调查
D.对全县中学生目前的睡眠情况进行调查
5、(4分)将化简,正确的结果是( )
A.B.C.D.
6、(4分)计算的结果为( )
A.±3B.-3C.3D.9
7、(4分)如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是( )
A.1B.2C.5D.6
8、(4分)下列图形,是中心对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一个正多边形的每个内角度数均为135°,则它的边数为____.
10、(4分)正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM=2,AE=8,则ED=_____.
11、(4分)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图5中挖去三角形的个数为______
12、(4分)如图,在中,,分别以两直角边,为边向外作正方形和正方形,为的中点,连接,,若,则图中阴影部分的面积为________.
13、(4分)既是矩形又是菱形四边形是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在图中网格上按要求画出图形,并回答问题:
(1)如果将三角形平移,使得点平移到图中点位置,点、点的对应点分别为点、点,请画出三角形;
(2)画出三角形关于点成中心对称的三角形.
(3)三角形与三角形______(填“是”或“否”)关于某个点成中心对称?如果是,请在图中画出这个对称中心,并记作点.
15、(8分)先化简,再求值:(1-)÷,其中x=2+.
16、(8分)如图所示,正方形ABCD的边长为4,AD∥y轴,D(1,-1).
(1)写出A,B,C三个顶点的坐标;
(2)写出BC的中点P的坐标.
17、(10分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)
(1)若顾客选择方式一,则享受9折优惠的概率为多少;
(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.
18、(10分)如图,现有一张边长为8的正方形纸片,点为边上的一点(不与点、点重合),将正方形纸片折叠,使点落在处,点落在处,交于,折痕为,连结、.
(1)求证:;
(2)求证:;
(3)当时,求的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边△A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边△A2A1B2,过点A2作A1B2平行于x轴,交直线l于点B3,以A2B3为边长作等边△A3A2B3,…,则等边△A2017A2018B2018的边长是_____.
20、(4分)如图所示,平行四边形中,点在边上,以为折痕,将向上翻折,点正好落在上的处,若的周长为8,的周长为22,则的长为__________.
21、(4分)如图,在△ABC中,,AC=3,AB=5,AB的垂直平分线DE交AB于点D,交BC于点E,则CE的长等于________.
22、(4分)如图,在中,,,,为边上一动点,于,于,为的中点,则的最小值为________.
23、(4分)如图在平面直角坐标系中,,,以为边作正方形,则点的坐标为___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D
(1)求这个反比函数的表达式;
(2)求△ACD的面积.
25、(10分)如图所示,在□ABCD中,点E,F在它的内部,且AE=CF,BE=DF,试指出AC与EF的关系,并说明理由.
26、(12分)如图,是由边长为1的小正方形组成的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.
(1)通过计算说明边长分别为2,3,的是否为直角三角形;
(2)请在所给的网格中画出格点.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据“有一内角为直角的平行四边形是矩形”来推断由三角形中位线定理和平行四边形的判定定理易推知四边形EFGH是平行四边形,若或者就可以判定四边形EFGH是矩形.
【详解】
当时,四边形EFGH是矩形,
,,,
,
即,
四边形EFGH是矩形;
故选:B.
此题考查了中点四边形的性质、矩形的判定以及三角形中位线的性质此题难度适中,注意掌握数形结合思想的应用.
2、C
【解析】
根据二次根式乘法法则进行计算即可.
【详解】
原式=
=
=4,
故选C.
本题考查了二次根式的乘法,正确把握二次根式乘法的运算法则是解题的关键.
3、D
【解析】
先把各点代入反比例函数的解析式,求出a、b、c的值,再比较大小即可.
【详解】
∵点A(-2,a),B(-1,b),C(3,c)都在函数的图象上,
∴,
∴b<a<c.
故选B.
考查的是反比例函数图象上点的坐标特点,熟知反比例函数的图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
4、D
【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,判断即可.
【详解】
解:A、审核书稿中的错别字适合全面调查;
B、对某校八一班同学的身高情况进行调查适合全面调查;
C、对某校的卫生死角进行调查适合全面调查;
D、对全县中学生目前的睡眠情况进行调查适合抽样调查;
故选:D.
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、C
【解析】
根据实数的性质即可求解.
【详解】
=
故选C.
此题主要考查实数的化简,解题的关键是熟知实数的性质.
6、C
【解析】
根据=|a|进行计算即可.
【详解】
=|-3|=3,
故选:C.
此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.
7、C
【解析】
分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.
详解:∵数据1,2,x,5,6的众数为6,
∴x=6,
把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,
则这组数据的中位数为5;
故选C.
点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.
8、D
【解析】
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
【详解】
根据中心对称图形的概念,只有D为中心对称图形. A、B、C均为轴对称图形,但不是中心对称图形,故选D.
本题考查中心对称图形的概念.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、8
【解析】
试题分析:多边形的每一个内角的度数=,根据公式就可以求出边数.
【详解】
设该正多边形的边数为n
由题意得:=135°
解得:n=8
故答案为8.
考点:多边形的内角和
10、1
【解析】
解:如图,过B作BP⊥EH于P,连接BE,交FH于N,则∠BPG=90°.∵四边形ABCD是正方形,∴∠BCD=∠ABC=∠BAD=90°,AB=BC,∴∠BCD=∠BPG=90°.∵GB平分∠CGE,∴∠EGB=∠CGB.又∵BG=BG,∴△BPG≌△BCG,∴∠PBG=∠CBG,BP=BC,∴AB=BP.∵∠BAE=∠BPE=90°,BE=BE,∴Rt△ABE≌Rt△PBE(HL),∴∠ABE=∠PBE,∴∠EBG=∠EBP+∠GBP=∠ABC=15°,由折叠得:BF=EF,BH=EH,∴FH垂直平分BE,∴△BNM是等腰直角三角形.∵BM=2,∴BN=NM=2,∴BE=1.∵AE=8,∴Rt△ABE中,AB==12,∴AD=12,∴DE=12﹣8=1.故答案为1.
点睛:本题考查了翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.
11、1
【解析】
根据题意找出图形的变化规律,根据规律计算即可.
【详解】
解:图1挖去中间的1个小三角形,
图2挖去中间的(1+3)个小三角形,
图3挖去中间的(1+3+32)个小三角形,
…
则图5挖去中间的(1+3+32+33+34)个小三角形,即图5挖去中间的1个小三角形,
故答案为1.
本题考查的是图形的变化,掌握图形的变化规律是解题的关键.
12、25
【解析】
首先连接OC,过点O作OM⊥BC,ON⊥AC,分别交BC、AC于点M、N,然后根据直角三角形斜边中线定理,即可得出,,又由正方形的性质,得出AC=CD,BC=CF,阴影部分面积即为△CDO和△CFO之和,经过等量转换,即可得解.
【详解】
连接OC,过点O作OM⊥BC,ON⊥AC,分别交BC、AC于点M、N,如图所示
∵,,点O为AB的中点,
∴,
又∵正方形和正方形,
∴AC=CD,BC=CF
∴
此题主要考查勾股定理、直角三角形中位线定理以及正方形的性质,熟练掌握,即可解题.
13、正方形
【解析】
根据正方形的判定定理即可得到结论.
【详解】
既是矩形又是菱形的四边形是正方形,
故答案为正方形.
本题考查了正方形的判定,熟练掌握正方形的判定定理是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见详解;(2)见详解;(3)是,见详解
【解析】
(1)由题意得出,需将点B与点C先向左平移3个单位,再向下平移1个单位,据此可得;
(2)分别作出三顶点分别关于点D的对称点,再首尾顺次连接可得;
(3)连接两组对应点即可得.
【详解】
解:(1)如图所示,即为所求.
(2)如图所示,即为所求;
(3)是,如图所示,与是关于点成中心对称.
本题主要考查作图-旋转变换和平移变换,解题的关键是熟练掌握旋转变换和平移变换的定义和性质,并据此得出变换后的对应点.
15、;.
【解析】
先根据分式的运算法则化简,再把x的值代入计算即可.
【详解】
(1-)÷
=×
=×
=
∴当x=2+时,
原式==.
本题主要考查分式的计算,掌握分式的运算法则是解题的关键.
16、(1)A(1,3),B(-3,3),C(-3,-1);(2)P的坐标(-3,1).
【解析】
(1)利用正方形的性质即可解决问题;
(2)根据中点坐标公式计算即可.
【详解】
解:(1)∵正方形ABCD的边长为4,AD∥y轴,D(1,-1).
∴A(1,3),B(-3,3),C(-3,-1),
(2)∵BP=BC=2,B(-3,3),C(-3,-1),
∴BC中点P的坐标(-3,1).
点睛:本题考查正方形的性质、坐标与图形的性质、中点坐标公式等知识,解题的关键是熟练掌握点的位置与坐标的关系,记住中点坐标公式,属于基础题.
17、(1)享受9折优惠的概率为;(2)顾客享受8折优惠的概率为.
【解析】
(1)由转动转盘甲共有四种等可能结果,其中指针指向A区域只有1种情况,利用概率公式计算可得;
(2)画树状图得出所有等可能结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得.
【详解】
(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A区域只有1种情况,
∴享受9折优惠的概率为;
(2)画树状图如下:
由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果,
所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为=.
本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.
18、(1)证明见解析;(2)证明见解析;(3)PH=.
【解析】
(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
(2)首先过B作BQ⊥PH,垂足为Q,易证得△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出AP+HC=PH.
(3)首先设AE=x,则EP=8-x,由勾股定理可得:在Rt△AEP中,AE2+AP2=PE2,即可得方程:x2+22=(8-x)2,即可求得答案AE的长,易证得△DPH∽△AEP,然后由相似三角形的对应边成比例,求得答案.
【详解】
(1)证明:∵PE=BE,
∴∠EPB=∠EBP,
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠BPH=∠PBC.
又∵四边形ABCD为正方形
∴AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)证明:过B作BQ⊥PH,垂足为Q,
由(1)知,∠APB=∠BPH,
在△ABP与△QBP中,
,
∴△ABP≌△QBP(AAS),
∴AP=QP,BA=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,
∴△BCH和△BQH是直角三角形,
在Rt△BCH与Rt△BQH中,
,
∴Rt△BCH≌Rt△BQH(HL),
∴CH=QH,
∴AP+HC=PH.
(3)解:∵AP=2,
∴PD=AD-AP=8-2=6,
设AE=x,则EP=8-x,
在Rt△AEP中,AE2+AP2=PE2,
即x2+22=(8-x)2,
解得:x=,
∵∠A=∠D=∠ABC=90°,
∴∠AEP+∠APE=90°,
由折叠的性质可得:∠EPG=∠ABC=90°,
∴∠APE+∠DPH=90°,
∴∠AEP=∠DPH,
∴△DPH∽△AEP,
∴,
∴,
解得:DH=.
∴PH=
此题属于四边形的综合题.考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理等知识.注意掌握折叠前后图形的对应关系、注意掌握方程思想的应用,注意准确作出辅助线是解此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
从特殊得到一般探究规律后,利用规律解决问题即可;
【详解】
∵直线l:y=x﹣与x轴交于点B1,
∴B1(1,0),OB1=1,△OA1B1的边长为1,
∵直线y=x﹣与x轴的夹角为30°,∠A1B1O=60°,
∴∠A1B1B2=90°,
∵∠A1B2B1=30°,
∴A1B2=2A1B1=2,△A2B3A3的边长是2,
同法可得:A2B3=4,△A2B3A3的边长是22,
由此可得,△AnBn+1An+1的边长是2n,
∴△A2017B2018A2018的边长是1.
故答案为1.
本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得△AnBn+1An+1的边长是2n.
20、1.
【解析】
依据△FDE的周长为8,△FCB的周长为22,即可得出DF+AD=8,FC+CB+AB=22,进而得到平行四边形ABCD的周长=8+22=30,可得AB+BC=BF+BC=15,再根据△FCB的周长=FC+CB+BF=22,即可得到CF=22-15=1.
【详解】
解:由折叠可得,EF=AE,BF=AB.
∵△FDE的周长为8,△FCB的周长为22,
∴DF+AD=8,FC+CB+AB=22,
∴平行四边形ABCD的周长=8+22=30,
∴AB+BC=BF+BC=15,
又∵△FCB的周长=FC+CB+BF=22,
∴CF=22-15=1,
故答案为:1.
本题考查了平行四边形的性质及图形的翻折问题,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
21、
【解析】
连接AE,由垂直平分线的性质可得AE=BE,利用勾股定理可得BC=4,设CE的长为x,则BE=4-x,在△ACE中利用勾股定理可得x的长,即得CE的长.
【详解】
解:连接AE,
∵DE为AB的垂直平分线,
∴AE=BE,
∵在△ABC中,∠ACB=90°,AC=3,AB=5,
由勾股定理得BC=4,
设CE的长为x,则BE=AE=4-x,在Rt△ACE中,
由勾股定理得:x2+32=(4-x)2,
解得:x=,
故答案为:.
本题主要考查了垂直平分线的性质和勾股定理,利用方程思想是解答此题的关键.
22、1.2
【解析】
∵在△ABC中,AB=3,AC=4,BC=5,
∴AB2+AC2=BC2,
即∠BAC=90°.
又PE⊥AB于E,PF⊥AC于F,
∴四边形AEPF是矩形,
∴EF=AP.
∵M是EF的中点,
∴AM=EF=AP.
因为AP的最小值即为直角三角形ABC斜边上的高,即2.4,
∴AM的最小值是1.2.
23、或
【解析】
当点C在AB上方时,过点C作CE⊥y轴于点E,易证△AOB≌△BEC(AAS),根据全等三角形的性质可得BE=AO=4,EC=OB=2,从而得到点C的坐标为(2,6),同理可得当点C在AB下方时,点C的坐标为:(-2,-2).
【详解】
解:如图所示,当点C在AB上方时,过点C作CE⊥y轴于点E,
∵,,四边形为正方形,
∴∠BEC=∠AOB=90°,BC=AB,
∵∠BCE+∠EBC=90°,∠OBA+∠EBC=90°,
∴∠BCE=∠OBA,
∴△AOB≌△BEC(AAS),
∴BE=AO=4,EC=OB=2,
∴OE=OB+BE=6,
∴此时点C的坐标为:(2,6),
同理可得当点C在AB下方时,点C的坐标为:(-2,-2),
综上所述,点C的坐标为:或
故答案为:或.
本题主要考查坐标与图形以及三角形全等的判定和性质,注意分情况讨论,不要漏解.
二、解答题(本大题共3个小题,共30分)
24、(1 );(2)6.
【解析】
试题分析:(1)将B点坐标代入y=中,求得k值,即可得反比例函数的解析式;(2)分别求得点C、点A、点D的坐标,即可求得△ACD的面积.
试题解析:
(1)将B点坐标代入y=中,得=2,解得k=6,
∴反比例函数的解析式为y=.
(2)∵点B与点C关于原点O对称,
∴C点坐标为(-3,-2).
∵BA⊥x轴,CD⊥x轴,
∴A点坐标为(3,0),D点坐标为(-3,0).
∴S△ACD=AD·CD=×[3-(-3)]×|-2|=6
25、AC与EF互相平分,见解析.
【解析】
由题意可证△ABE≌△DCF,可得∠BAE=∠DCF,即可得∠CAE=∠ACF,可证AE∥CF即可证AECF是平行四边形,可得AC与EF的关系.
【详解】
AC与EF互相平分
∵▱ABCD
∴AB∥CD,AB=CD
∴∠BAC=∠ACD
∵AB=CD,AE=CF,BE=DF
∴△ABE≌△CDF
∴∠BAE=∠FCD且∠BAC=∠ACD
∴∠EAC=∠FCA
∴CF∥AE且AE=CF
∴四边形AECF是平行四边形
∴AC与EF互相平分
本题考查了平行四边形的性质,全等三角形的判定和性质,证AECF是平行四边形是本题的关键.
26、 (1)能构成直角三角形;(2)见解析.
【解析】
(1)根据勾股逆定理判断即可;
(2)由(1)可知2,3为直角边,为斜边,先画出两直角边再连接即可
【详解】
解:(1)∵
∴能构成直角三角形
(2) 如图即为所求.
本题考查了直角三角形的判定,由勾股逆定理可知若三角形三边长满足,则其为直角三角形.
题号
一
二
三
四
五
总分
得分
批阅人
江苏省无锡市周铁区联盟2025届数学九上开学质量检测模拟试题【含答案】: 这是一份江苏省无锡市周铁区联盟2025届数学九上开学质量检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省无锡市和桥区数学九上开学检测模拟试题【含答案】: 这是一份2025届江苏省无锡市和桥区数学九上开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省无锡市宜兴市宜城环科园联盟九上数学开学综合测试试题【含答案】: 这是一份2024年江苏省无锡市宜兴市宜城环科园联盟九上数学开学综合测试试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。