江苏省无锡市周铁区联盟2025届数学九上开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在四边形中,,如果再添加一个条件,即可推出该四边形是正方形,这个条件可以是( )
A.B.C.D.
2、(4分)如图,矩形ABCD中,对角线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=2,BC=4,一动点P从点B出发,沿着B﹣A﹣D﹣C在矩形的边上运动,运动到点C停止,点M为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的( )
A.点CB.点OC.点ED.点F
3、(4分)如图,平行四边形的周长为40,的周长比的周长多10,则为( )
A.5B.20C.10D.15
4、(4分)在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是( )
A.B.C.D.
5、(4分)方程x2﹣9=0的解是( )
A.x=3B.x=9C.x=±3D.x=±9
6、(4分)某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是是0.1.则下列说法中,正确的是( )
A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定
C.甲、乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定
7、(4分)函数y=中自变量x的取值范围为( )
A.x≥0B.x≥-1C.x>-1D.x≥1
8、(4分)如图,在中,,,,为上的动点,连接,以、为边作平行四边形,则长的最小值为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_____千米.
10、(4分)若方程的解是正数,则m的取值范围_____.
11、(4分)某市对400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为_____.
12、(4分)169的算术平方根是______.
13、(4分)如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知,如图,在三角形中,,于,且.点从点出发,沿方向匀速运动,速度为;同时点由点出发,沿方向匀速运动,速度为,过点的动直线,交于点,连结,设运动时间为,解答下列问题:
(1)线段_________;
(2)求证:;
(3)当为何值时,以为顶点的四边形为平行四边形?
15、(8分)如图1,对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形中,,,问四边形是垂美四边形吗?请说明理由;
(2)性质探究:如图1,四边形的对角线、交于点,.试证明:;
(3)解决问题:如图3,分别以的直角边和斜边为边向外作正方形和正方形,连结、、.已知,,求的长.
16、(8分)有这样一个问题:探究函数的图象与性质,小东根据学习函数的经验,对函数的图象与性质进行了探究,下面是小东的探究过程,请补充完整:
(1)下表是与的几组对应值,则 .
(2)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点. 根据描出的点,画出该函数的图象;
(3)当时,随的增大而 ;当时,的最小值为 .
17、(10分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,
(1)请在所给的网格内画出以线段AB、BC为边的菱形,并求点D的坐标;
(2)求菱形ABCD的对角线AC的长.
18、(10分)(2005•荆门)某校初中三年级270名师生计划集体外出一日游,乘车往返,经与客运公司联系,他们有座位数不同的中巴车和大客车两种车型可供选择,每辆大客车比中巴车多15个座位,学校根据中巴车和大客车的座位数计算后得知,如果租用中巴车若干辆,师生刚好坐满全部座位;如果租用大客车,不仅少用一辆,而且师生坐完后还多30个座位.
(1)求中巴车和大客车各有多少个座位?
(2)客运公司为学校这次活动提供的报价是:租用中巴车每辆往返费用350元,租用大客车每辆往返费用400元,学校在研究租车方案时发现,同时租用两种车,其中大客车比中巴车多租一辆,所需租车费比单独租用一种车型都要便宜,按这种方案需要中巴车和大客车各多少辆?租车费比单独租用中巴车或大客车各少多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第5幅图中有______个正方形.
20、(4分)已知:a、b、c是△ABC的三边长,且满足|a﹣3|++(c﹣5)2=0,则该三角形的面积是_____.
21、(4分)分解因式:_____.
22、(4分)某公司有一名经理和10名雇员共11名员工,他们的月工资情况(单位:元)如下:30000,2350,2350,2250,2250,2250,2250,2150,2050,1950,1850.上述数据的平均数是__________,中位数是________.通过上面得到的结果不难看出:用_________(填“平均数”或“中位数”)更能准确地反映出该公司全体员工的月人均收入水平.
23、(4分)如果一组数据a ,a ,…a的平均数是2,那么新数据3a ,3a ,…3a的平均数是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:
(1)DE=BF;
(2)四边形DEBF是平行四边形.
25、(10分)如图,在中,,、分别是、的中点,连接,过作交的延长线于.
(1)证明:四边形是平行四边形;
(2)若四边形的周长是,的长为,求线段的长度.
26、(12分)我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如由图1可以得到(a+1b)(a+b)=a1+3ab+1b1.请回答下列问题:
(1)写出图1中所表示的数学等式:_____________.
(1)利用(1)中所得的结论,解决下列问题:已知a+b+c=11,ab+bc+ac=38,求a1+b1+c1的值;
(3)图3中给出了若干个边长为a和边长为b的小正方形纸片及若干个长为b、宽为a的长方形纸片.
①请按要求利用所给的纸片拼出一个几何图形,并画在所给的方框内,要求所拼的几何图形的面积为1a1+5ab+1b1;
②再利用另一种计算面积的方法,可将多项式1a1+5ab+1b1分解因式,即1a1+5ab+1b1=________.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由已知可得该四边形为矩形,再添加条件:一组邻边相等,即可判定为正方形.
【详解】
∵四边形ABCD中,∠A=∠B=∠C=90°,
∴四边形ABCD是矩形,
当一组邻边相等时,矩形ABCD为正方形,
这个条件可以是:.
故选A.
此题考查正方形的判定,解题关键在于掌握判定定理.
2、B
【解析】
从图2中可看出当x=6时,此时△BPM的面积为0,说明点M一定在BD上,选项中只有点O在BD上,所以点M的位置可能是图1中的点O.
【详解】
解:∵AB=2,BC=4,四边形ABCD是矩形,
∴当x=6时,点P到达D点,此时△BPM的面积为0,说明点M一定在BD上,
∴从选项中可得只有O点符合,所以点M的位置可能是图1中的点O.
故选:B.
本题主要考查了动点问题的函数图象,解题的关键是找出当x=6时,此时△BPM的面积为0,说明点M一定在BD上这一信息.
3、A
【解析】
由于平行四边形的对角线互相平分,那么△AOB、△BOC的周长差,实际是AB、BC的差,结合平行四边形的周长,即可得解.
【详解】
在平行四边形ABCD中,
AO=OC,AB=CD,AD=BC,
∵△AOB的周长比△BOC的周长少10cm,
∴BC+OB+OC-(AB+OB+OA)=10cm,
∴BC-AB=10cm,
∵平行四边形ABCD的周长是40cm,
∴AB+BC+CD+AD=40cm,
∴BC+AB=20cm,
∴AB=5cm.
故选A.
本题考查平行四边形的性质,比较简单,关键是利用平行四边形的性质解题:平行四边形的对角线互相平分.
4、C
【解析】
分析:根据第二象限内点的坐标特征,可得答案.
详解:由题意,得
x=-4,y=3,
即M点的坐标是(-4,3),
故选C.
点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.
5、C
【解析】
试题分析:首先把﹣9移到方程右边,再两边直接开平方即可.
解:移项得;x2=9,
两边直接开平方得:x=±3,
故选C.
考点:解一元二次方程-直接开平方法.
6、B
【解析】
方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,
∵0.1<0.28,∴乙的成绩比甲的成绩稳定.故选B.
7、B
【解析】
根据题意得:x+1≥0,
解得:x≥-1.
故选:B.
8、D
【解析】
由勾股定理可知是直角三角形,由垂线段最短可知当DE⊥AB时,DE有最小值,此时DE与斜边上的高相等,可求得答案.
【详解】
如图:
∵四边形是平行四边形,
∴CE∥AB,
∵点D在线段AB上运动,
∴当DE⊥AB时,DE最短,
在中,,,,
∴AC2+BC2=AB2,
∴是直角三角形,
过C作CF⊥AB于点F,
∴DE=CF=,
故选:D.
本题主要考查平行四边形的性质和直角三角形的性质,确定出DE最短时D点的位置是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、630
【解析】
分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B地,由此则可求得两车的速度.再根据甲车返回到A地总用时16.5小时,求出甲车返回时的速度即可求解.
详解:设甲车,乙车的速度分别为x千米/时,y千米/时,
甲车与乙车相向而行5小时相遇,则5(x+y)=900,解得x+y=180,
相遇后当甲车到达B地时两车相距720千米,所需时间为720÷180=4小时,
则甲车从A地到B需要9小时,故甲车的速度为900÷9=100千米/时,乙车的速度为180-100=80千米/时,
乙车行驶900-720=180千米所需时间为180÷80=2.25小时,
甲车从B地到A地的速度为900÷(16.5-5-4)=120千米/时.
所以甲车从B地向A地行驶了120×2.25=270千米,
当乙车到达A地时,甲车离A地的距离为900-270=630千米.
点睛:利用函数图象解决实际问题,其关键在于正确理解函数图象横,纵坐标表示的意义,抓住交点,起点.终点等关键点,理解问题的发展过程,将实际问题抽象为数学问题,从而将这个数学问题变化为解答实际问题.
10、m>-2且m≠0
【解析】
分析:本题解出分式方程的解,根据题意解为正数并且解不能等于2,列出关于m的取值范围.
解析:解方程 解为正数,∴ 且m≠0.
故答案为m>-2且m≠0
11、1
【解析】
分析:根据频率= 或频数=频率×数据总和解答.
详解:由题意,该组的人数为:400×0.25=1(人).
故答案为1.
点睛:本题考查了频数与频率之间的计算,熟知频数、频率及样本总数之间的关系是解决本题的关键.
12、1
【解析】
根据算术平方根的定义解答即可.
【详解】
解:==1.
故答案为:1.
此题主要考查了算术平方根的定义:如果一个数的平方等于A,那么这个数就叫做A的平方根,其中非负的平方根叫做这个数的算术平方根.
13、菱形
【解析】
由条件可知AB∥CD,AD∥BC,再证明AB=BC,即可解决问题.
【详解】
过点D作DE⊥AB于E,DF⊥BC于F.
∵两把直尺的对边分别平行,即:AB∥CD,AD∥BC,
∴四边形ABCD是平行四边形,
∵两把直尺的宽度相等,
∴DE=DF.
又∵平行四边形ABCD的面积=AB•DE=BC•DF,
∴AB=BC,
∴平行四边形ABCD为菱形.
故答案为:菱形.
本题主要考查菱形的判定定理,添加辅助线,利用平行四边形的面积法证明平行四边形的邻边相等,是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)12;(2)证明见详解;(3)或t=4s.
【解析】
(1)由勾股定理求出AD即可;
(2)由等腰三角形的性质和平行线的性质得出∠PBQ=∠PQB,再由等腰三角形的判定定理即可得出结论;
(3)分两种情况:①当点M在点D的上方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AD-AM=12-4t,由PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可;
②当点M在点D的下方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AM-AD=4t-12,由PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可.
【详解】
(1)解:∵BD⊥AC,
∴∠ADB=90°,
∴(cm),
(2)如图所示:
∵AB=AC,
∴∠ABC=∠C,即∠PBQ=∠C,
∵PQ∥AC,
∴∠PQB=∠C,
∴∠PBQ=∠PQB,
∴PB=PQ;
(3)分两种情况:
①当点M在点D的上方时,如图2所示:
根据题意得:PQ=BP=t,AM=4t,AD=12,
∴MD=AD-AM=12-4t,
∵PQ∥AC,
∴PQ∥MD,
∴当PQ=MD时,四边形PQDM是平行四边形,
即:当t=12-4t,时,四边形PQDM是平行四边形,
解得:(s);
②当点M在点D的下方时,如图3所示:
根据题意得:PQ=BP=t,AM=4t,AD=12,
∴MD=AM-AD=4t-12,
∵PQ∥AC,
∴PQ∥MD,
∴当PQ=MD时,四边形PQDM是平行四边形,
即:当t=4t-12时,四边形PQDM是平行四边形,
解得:t=4(s);
综上所述,当或t=4s时,以P、Q、D、M为顶点的四边形为平行四边形.
本题是四边形综合题目,考查了平行四边形的判定、等腰三角形的判定与性质、勾股定理以及分类讨论等知识;本题综合性强,熟练掌握平行四边形的判定方法,进行分类讨论是解决问题(3)的关键.
15、 (1) 四边形是垂美四边形,理由见解析;(2)证明见解析;(3) .
【解析】
(1)根据垂直平分线的判定定理,可证直线是线段的垂直平分线,结合“垂美四边形”的定义证明即可;
(2)根据垂直的定义和勾股定理解答即可;
(3)连接、,先证明,得到∴,可证,即,从而四边形是垂美四边形,根据垂美四边形的性质、勾股定理、结合(2)的结论计算即可.
【详解】
(1)四边形是垂美四边形.
证明:连接AC,BD,
∵,
∴点在线段的垂直平分线上,
∵,
∴点在线段的垂直平分线上,
∴直线是线段的垂直平分线,
∴,即四边形是垂美四边形;
(2)猜想结论:垂美四边形的两组对边的平方和相等.
如图2,已知四边形中,,垂足为,
求证:
证明:∵,
∴,
由勾股定理得,,
,
∴;
故答案为:.
(3)连接、,
∵,
∴,即,
在和中,,
∴,
∴,又,
∴,即,
∴四边形是垂美四边形,
由(2)得,,
∵,,
∴,,,
∴,
∴.
本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.
16、(1);(2)详见解析;(3)增大;
【解析】
(1)把x=代入函数解析式即可得到结论;
(2)根据描出的点,画出该函数的图象即可;
(3)根据函数图象即可得到结论.
【详解】
解:(1)把x=代入y=x3得,y=;
故答案为:;
(2)如图所示:
(3)根据图象得,当x<0时,y随x的增大而增大;
当时,的最小值为-1.
故答案为:增大;.
本题考查了函数的图象与性质,正确的画出函数的图形是解题的关键.
17、(1)D(-2,1);(2)3
【解析】
(1)根据菱形的四条边相等,可分别以点A,C为圆心,以AB长为半径画弧,两弧的交点即为点D的位置,根据所在象限和距坐标轴的距离得到点D的坐标即可;
(2)利用勾股定理易得菱形的一条对角线AC的长即可.
【详解】
解:(1)如图,菱形ABCD为所求图形,D(-2,1);
(2)AC==3.
主要考查了菱形四条边相等的判定,及勾股定理的运用,熟练掌握菱形的性质及勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.
18、(1)每辆中巴车有座位45个,每辆大客车有座位60个.(1)租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100元.
【解析】
试题分析:(1)每辆车的座位数:设每辆中巴车有座位x个,每辆大客车有座位(x+15)个,可座学生人数分别是:170、(170+30).车辆数可以表示为,因为租用大客车少一辆.所以,中巴车的辆数=大客车辆数+1,列方程.
(1)在保证学生都有座位的前提下,有三种租车方案:
①单独租用中巴车,需要租车辆,可以计算费用.
②单独租用大客车,需要租车(6﹣1)辆,也可以计算费用.
③合租,设租用中巴车y辆,则大客车(y+1)辆,座位数应不少于学生数,根据题意列出不等式.注意,车辆数必须是整数.三种情况,通过比较,就可以回答题目的问题了.
解:(1)设每辆中巴车有座位x个,每辆大客车有座位(x+15)个,依题意有
解之得:x1=45,x1=﹣90(不合题意,舍去).
经检验x=45是分式方程的解,
故大客车有座位:x+15=45+15=60个.
答:每辆中巴车有座位45个,每辆大客车有座位60个.
(1)解法一:
①若单独租用中巴车,租车费用为×350=1100(元)
②若单独租用大客车,租车费用为(6﹣1)×400=1000(元)
③设租用中巴车y辆,大客车(y+1)辆,则有
45y+60(y+1)≥170
解得y≥1,当y=1时,y+1=3,运送人数为45×1+60×3=170人,符合要求
这时租车费用为350×1+400×3=1900(元)
故租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100元.
解法二:①、②同解法一
③设租用中巴车y辆,大客车(y+1)辆,则有
350y+400(y+1)<1000
解得:.
由y为整数,得到y=1或y=1.
当y=1时,运送人数为45×1+60×1=165<170,不合要求舍去;
当y=1时,运送人数为45×1+60×3=170,符合要求.
故租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100元.
考点:一元一次不等式的应用;解一元二次方程-因式分解法;分式方程的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、55
【解析】
观察图形,找到正方形的个数与序数之间的关系,从而得出第5幅图中正方形的个数.
【详解】
解:∵第1幅图中有1个正方形,
第2幅图中有1+4=5个正方形,
第3幅图中有1+4+9=14个正方形,
∴第4幅图中有12+22+32+42=30个正方形,
第5幅图中有12+22+32+42+52=55个正方形.
故答案为:55.
本题考查查图形的变化规律,能根据图形之间的变化规律,得出正方形个数与序数之间的规律是解决此题的关键.
20、1
【解析】
根据绝对值,二次根式,平方的非负性求出a,b,c的值,再根据勾股定理逆定理得到三角形为直角三角形,故可求解.
【详解】
解:由题意知a﹣3=0,b﹣4=0,c﹣5=0,
∴a=3,b=4,c=5,
∴a2+b2=c2,
∴三角形的形状是直角三角形,
则该三角形的面积是3×4÷2=1.
故答案为:1.
此题主要考查勾股定理的应用,解题的关键是熟知实数的性质.
21、
【解析】
直接提取公因式a即可得答案.
【详解】
3a2+a=a(3a+1),
故答案为:a(3a+1)
本题考查提取公因式法分解因式,正确找出公因式是解题关键.
22、4700 2250 中位数
【解析】
分析:
根据“平均数”、“中位数”的定义和计算方法进行计算判断即可.
详解:
(1)这组数据的平均数为:
(30000+2350+2350+2250+2250+2250+2250+2150+2050+1950+1850)÷11
=4700(元);
(2)由题中数据可知,这组数据按从大到小的顺序排列后,排在最中间的一个数是2250元,
∴这组数据的中位数是:2250;
(3)∵这组数据中多数数据更接近中位数2250,且都与平均数相差较多,
∴用“中位数”更能反映出该公司全体员工的月人均收入水平.
综上所述:本题答案为:(1)4700;(2)2250;(3)中位数.
点睛:熟记“平均数、中位数的定义和计算方法”是正确解答本题的关键.
23、6
【解析】
根据所给的一组数据的平均数写出这组数据的平均数的表示式,把要求的结果也有平均数的公式表示出来,根据前面条件得到结果.
【详解】
解:一组数据,,,的平均数为2,
,
,,,的平均数是
故答案为6
本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.
二、解答题(本大题共3个小题,共30分)
24、详见解析.
【解析】
(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AD∥CB,AD=CB,
∴∠DAE=∠BCF,
在△ADE和△CBF中,
∴△ADE≌△CBF,
∴DE=BF.
(2)由(1),可得∴△ADE≌△CBF,
∴∠ADE=∠CBF,
∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,
∴∠DEF=∠BFE,
∴DE∥BF,
又∵DE=BF,
∴四边形DEBF是平行四边形.
考点:平行四边形的判定与性质;全等三角形的判定与性质.
25、(1)见解析;(2).
【解析】
(1)由三角形中位线定理推知,,然后结合已知条件“”,利用两组对边相互平行得到四边形为平行四边形;
(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到,即可得出四边形的周长,故,然后根据勾股定理即可求得;
【详解】
解:(1)、分别是、的中点,是延长线上的一点,
是的中位线,
.,
又,
四边形是平行四边形;
(2)解:四边形是平行四边形;
,
是斜边上的中线,
,
四边形的周长,
四边形的周长为,的长,
,
在中,,
,即,
解得,,
本题考查了三角形的中位线定理,直角三角形斜边中线的性质,平行四边形的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.
26、(1)(a+b+c)1=a1+b1+c1+1ab+1ac+1bc;
(1)a1+b1+c1=45;
(3)①画图见解析;②1a1+5ab+1b1=(1a+b)(a+1b).
【解析】
试题分析:(1)根据数据表示出矩形的长与宽,再根据矩形的面积公式写出等式的左边,再表示出每一小部分的矩形的面积,然后根据面积相等即可写出等式.(1)根据利用(1)中所得到的结论,将a+b+c=11,ab+bc+ac=38作为整式代入即可求出.(3)①找规律,根据公式画出图形,拼成一个长方形,使它满足所给的条件;②根据所给的规律分解因式即可.
试题解析:
(1)(a+b+c)1=a1+b1+c1+1ab+1ac+1bc;
故答案为(a+b+c)1=a1+b1+c1+1ab+1ac+1bc;
(1)a1+b1+c1=(a+b+c)1﹣1ab﹣1ac﹣1bc,
=111﹣1×38=45;
(3)
①如图所示,
②如上图所示的矩形面积=(1a+b)(a+1b),
它是由1个边长为a的正方形、5个边长分别为a、b的长方形、1个边长为b的小正方形组成,所以面积为1a1+5ab+1b1,则1a1+5ab+1b1=(1a+b)(a+1b),
故答案为1a1+5ab+1b1=(1a+b)(a+1b).
点睛:本题考查了完全平方公式的几何背景和因式分解的应用,关键是能够把代数式转化成几何图形,用到的知识点是长方形和正方形的面积公式,要认真总结规律,进行答题.
题号
一
二
三
四
五
总分
得分
批阅人
…
…
…
…
2025届江苏省无锡市宜兴市周铁区数学九年级第一学期开学调研模拟试题【含答案】: 这是一份2025届江苏省无锡市宜兴市周铁区数学九年级第一学期开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省无锡市和桥区数学九上开学检测模拟试题【含答案】: 这是一份2025届江苏省无锡市和桥区数学九上开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省宜兴市周铁区九上数学开学经典模拟试题【含答案】: 这是一份2024年江苏省宜兴市周铁区九上数学开学经典模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。