江苏省无锡市江阴中学2024-2025学年九上数学开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)等腰三角形的底边和腰长分别是10和12,则底边上的高是( )
A.13B.8C.D.
2、(4分)函数y=﹣x﹣3的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
3、(4分)如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积是( )
A.4B.2C.1D.
4、(4分)若一次函数的图像与直线平行,且过点,则此一次函数的解析式为( )
A.B.C.D.
5、(4分)若有意义,则的取值范围是( )
A.B.C.D.且
6、(4分)下列函数中,是一次函数的是( )
A.B.C.D.
7、(4分)已知点在函数的图象上,则
A.5B.10C.D.
8、(4分)函数y=中,自变量x的取值范围在数轴上表示正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算:﹣=__.
10、(4分)如图,平行四边形ABCD中,,,,则平行四边形ABCD的面积为______.
11、(4分)已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=___________cm.
12、(4分)将直线平移后经过点(5,),则平移后的直线解析式为______________.
13、(4分)计算:_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)求证:菱形的两条对角线互相垂直.(要求:画出图形,写出已知,求证和证明过程)
15、(8分)我县某中学开展“庆十一”爱国知识竞赛活动,九年级(1)、(2)班各选出名选手参加比赛,两个班选出的名选手的比赛成绩(满分为100分)如图所示。
(1)根据图示填写如表:
(2)请你计算九(1)和九(2)班的平均成绩各是多少分。
(3)结合两班竞赛成绩的平均数和中位数,分析哪个班级的竞赛成绩较好
(4)请计算九(1)、九(2)班的竞赛成绩的方差,并说明哪个班的成绩比较稳定?
16、(8分)已知某服装厂现有种布料70米,种布料52米,现计划用这两种布料生产、两种型号的时装共80套.已知做一套型号的时装需用A种布料1.1米,种布料0.4米,可获利50元;做一套型号的时装需用种布料0.6米,种布料0.9米,可获利45元.设生产型号的时装套数为,用这批布料生产两种型号的时装所获得的总利润为元.
(1)求(元)与(套)的函数关系式.
(2)有几种生产方案?
(3)如何生产使该厂所获利润最大?最大利润是多?
17、(10分)如图,平面直角坐标系中,直线AB交y轴于点A(0,1),交x轴于点B(3,0).直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,在点D的上方,设P(1,n).
(1)求直线AB的解析式;
(2)求△ABP的面积(用含n的代数式表示);
(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.
18、(10分)在中,D,E,F分别是三边,,上的中点,连接,,,,已知.
(1)观察猜想:如图,当时,①四边形的对角线与的数量关系是________;②四边形的形状是_______;
(2)数学思考:如图,当时,(1)中的结论①,②是否发生变化?若发生变化,请说明理由;
(3)拓展延伸:如图,将上图的点A沿向下平移到点,使得,已知,分别为,的中点,求四边形与四边形的面积比.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:﹣=_____.
20、(4分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是_______.
21、(4分)如图,点G为正方形ABCD内一点,AB=AG,∠AGB=70°,联结DG,那么∠BGD=_____度.
22、(4分)如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=_____.
23、(4分)如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知边长为4的正方形ABCD,顶点A与坐标原点重合,一反比例函数图象过顶点C,动点P以每秒1个单位速度从点A出发沿AB方向运动,动点Q同时以每秒4个单位速度从D点出发沿正方形的边DC﹣CB﹣BA方向顺时针折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t.
(1)求出该反比例函数解析式;
(2)连接PD,当以点Q和正方形的某两个顶点组成的三角形和△PAD全等时,求点Q的坐标;
(3)用含t的代数式表示以点Q、P、D为顶点的三角形的面积s,并指出相应t的取值.
25、(10分)如图,点D是△ABC的边AB上一点,连接CD,若AD=2,BD=4,∠ACD=∠B,求AC的长.
26、(12分)定义:我们把对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,那么四边形ABCD是垂美四边形吗?请说明理由.
(2)性质探究:
①如图1,垂美四边形ABCD两组对边AB、CD与BC、AD之间有怎样的数量关系?写出你的猜想,并给出证明.
②如图3,在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;
(3)问题解决:
如图4,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE、BG,GE,已知AC=2,AB=1.求GE的长度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
先作底边上的高,由等腰三角形的性质和勾股定理即可求出此高的长度.
【详解】
解:作底边上的高并设此高的长度为x,
由等腰三角形三线合一的性质可得高线平分底边,
根据勾股定理得:52+x2=122,
解得x=
本题考点:等腰三角形底边上高的性质和勾股定理,等腰三角形底边上的高所在直线为底边的中垂线.然后根据勾股定理即可求出底边上高的长度.
2、A
【解析】
根据比例系数得到相应的象限,进而根据常数得到另一象限,判断即可.
【详解】
解:∵k=﹣1<0,
∴一次函数经过二、四象限;
∵b=﹣3<0,
∴一次函数又经过第三象限,
∴一次函数y=﹣x﹣3的图象不经过第一象限,
故选:A.
此题考查一次函数的性质,用到的知识点为:k<0,函数图象经过二、四象限,b<0,函数图象经过第三象限.
3、C
【解析】
根据正方形的性质可得OA=OB,∠OAE=∠OBF=45°,AC⊥BD,再利用ASA证明△AOE≌△BOF,从而可得△AOE的面积=△BOF的面积,进而可得四边形AFOE的面积=正方形ABCD的面积,问题即得解决.
【详解】
解:∵四边形ABCD是正方形,
∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,
∴∠AOB=90°,
∵OE⊥OF,
∴∠EOF=90°,
∴∠AOE=∠BOF,
∴△AOE≌△BOF(ASA),
∴△AOE的面积=△BOF的面积,
∴四边形AFOE的面积=正方形ABCD的面积=×22=1;
故选C.
本题主要考查了正方形的性质、全等三角形的判定与性质等知识,熟练掌握正方形的性质,证明三角形全等是解题的关键.
4、D
【解析】
根据平行直线的解析式的k值相等求出k,然后把点P(-1,2)的坐标代入一次函数解析式计算即可得解.
【详解】
一次函数y=kx+b的图象与直线y=-x+1平行,
∴k=-1,
∵一次函数过点(8,2),
∴2=-8+b
解得b=1,
∴一次函数解析式为y=-x+1.
故选:D.
考查了两直线平行的问题,根据平行直线的解析式的k值相等求出一次函数解析式的k值是解题的关键.
5、B
【解析】
二次根式中被开方数的取值范围:二次根式中的被开方数是非负数,此外还需考虑分母不为零.
【详解】
解:要使有意义,则2x+1>0,
∴x的取值范围为.
故选:B.
本题主要考查二次根式有意义的条件,如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.
6、D
【解析】
根据一次函数的定义进行判断即可.
【详解】
A. 该函数属于正比例函数,故本选项错误;
B. 该函数属于反比例比例函数,故本选项错误;
C. 该函数属于二次函数,故本选项错误;
D. 该函数属于一次函数,故本选项正确;
故选:D.
此题考查一次函数,难度不大
7、B
【解析】
根据已知点在函数的图象上,将点代入可得:.
【详解】
因为点在函数的图象上,
所以,
故选B.
本题主要考查一次函数图象上点的特征,解决本题的关键是要熟练掌握一次函数图象上点的特征.
8、B
【解析】
根据函数y=可得出x-1≥0,再解出一元一次不等式即可.
【详解】
由题意得,x-1≥0,
解得x≥1.
在数轴上表示如下:
故选B.
本题要考查的是一元一次不等式的解法以及二次根式成立得出判定,熟练掌握一元一次不等式的解法是本题的解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
分析:先将二次根式化为最简,然后合并同类二次根式即可.
详解:原式=3-2
=.
故答案为.
点睛:本题考查了二次根式的加减运算,解答本题得关键是掌握二次根式的化简及同类二次根式的合并.
10、10
【解析】
从A点做底边BC的垂线AE,在三角形ABE中30度角所对的直角边等于斜边AB的一半,所以AE=2,同时AE也是平行四边形ABCD的高,所以平行四边形的面积等于5x2=10.
【详解】
作AE⊥BC,
因为
所以,AE=AB=×4 =2.
所以,平行四边形的面积=BC×AE=5x2=10.
故答案为10
本题考核知识点:直角三角形. 解题关键点:熟记含有30〬角的直角三角形的性质.
11、6
【解析】
根据三角形的中位线性质可得,
12、y=2x-1
【解析】
根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点(5,1)代入即可得出直线的函数解析式.
【详解】
解:设平移后直线的解析式为y=2x+b.
把(5,1)代入直线解析式得1=2×5+b,
解得 b=-1.
所以平移后直线的解析式为y=2x-1.
故答案为:y=2x-1.
本题考查一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.
13、
【解析】
先计算二次根式的乘法,然后进行化简,最后合并即可.
【详解】
原式.
故答案为:.
本题考查了二次根式的混合运算,掌握各种知识点的运算法则是解答本题的关键.
三、解答题(本大题共5个小题,共48分)
14、见详解
【解析】
根据等腰三角形的三线合一的性质证明即可.
【详解】
已知:如图,四边形ABCD是菱形,对角线AC,BD相交于点O.
求证:AC⊥BD.
证明:∵四边形ABCD是菱形
∴AD=CD,OA=OC
∴OD⊥AC (三线合一)
即AC⊥BD.
本题考查菱形的性质、等腰三角形的三线合一.线段的垂直平分线的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
15、(1);(2)甲:85,乙:85;(3)九(1)班成绩较好;(4)九(1)班成绩比较稳定.
【解析】
(1)观察图分别写出九(1)班和九(2)班5名选手的比赛成绩,然后根据中位数和众数的定义求解即可;(2)根据平均数公式计算即可;(3)在平均数相同的情况下,中位数较高的成绩较好;(4)先根据方差公式分别计算两个班比赛成绩的方差,再根据方差的意义判断即可.
【详解】
由图可知:九(1)班5位同学的成绩分别为:75,80,85,85,100,所以中位数为85,众数为85;九(2)班5位同学的成绩分别为:70,100,100,75,80,排序为:70,75,80,100,100,所以中位数为80,众数为100,即填表如下:
(2)九(1)班的平均成绩为(分),
九(2)班的平均成绩为(分);
(3)因为两个班级的平均数都相同,九(1)班的中位数较高,所以在平均数相同的情况下中位数较高的九(1)班成绩较好;
(4);
因为
所以九(1)班成绩比较稳定.
本题考查了平均数、中位数、众数和方差的意义即运用.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
16、(1)y=5x+3600;(2)共有5种生产方案;(3)当生产型号的时装44套、生产型号的时装36套时,该厂所获利润最大,最大利润为3820元.
【解析】
(1)根据题意,根据总利润=型号的总利润+型号的总利润,即可求出(元)与(套)的函数关系式;
(2)根据A、B两种布料的总长列出不等式,即可求出x的取值范围,从而求出各个方案;
(3)一次函数的增减性,求最值即可.
【详解】
解:(1)由题意可知:y=50x+45(80-x)=5x+3600
即(元)与(套)的函数关系式为y=5x+3600;
(2)由题意可知:
解得:
故可生产型号的时装40套、生产型号的时装80-40=40套或生产型号的时装41套、生产型号的时装80-41=39套或生产型号的时装42套、生产型号的时装80-42=38套或生产型号的时装43套、生产型号的时装80-43=37套或生产型号的时装44套、生产型号的时装80-44=36套,共5种生产方案
答:共有5种生产方案.
(3)∵一次函数y=5x+3600中,,5>0
∴y随x的增大而增大
∴当x=44时,y取最大值,ymax=44×5+3600=3820
即当生产型号的时装44套、生产型号的时装36套时,该厂所获利润最大,最大利润为3820元.
答: 当生产型号的时装44套、生产型号的时装36套时,该厂所获利润最大,最大利润为3820元.
此题考查的是一次函数的应用和一元一次不等式组的应用,掌握实际问题中的等量关系、不等关系和一次函数的增减性是解决此题的关键.
17、(1)y=x+1;(2);(3)点C的坐标是(3,4)或(5,2)或(3,2).
【解析】
(1)把的坐标代入直线的解析式,即可求得的值,然后在解析式中,令,求得的值,即可求得的坐标;
(2)利用即可求出结果;
(3)分三种情况讨论,当、、分别为等腰直角三角形的直角顶点时,求出点的坐标分别为、、。
【详解】
(1)设直线AB的解析式是y=kx+b
把A(0,1),B(3,0)代入得:
解得:
∴直线AB的解析式是:
(2)过点A作AM⊥PD,垂足为M,则有AM=1,
∵x=1时,=,P在点D的上方,
∴PD=n﹣,
由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,
∴,
∴;
(3)当S△ABP=2时,,解得n=2,∴点P(1,2).
∵E(1,0), ∴PE=BE=2,
∴∠EPB=∠EBP=45°.
第1种情况,如图1,∠CPB=90°,BP=PC,
过点C作CN⊥直线x=1于点N.
∵∠CPB=90°,∠EPB=45°,
∴∠NPC=∠EPB=45°.
又∵∠CNP=∠PEB=90°,BP=PC,
∴△CNP≌△BEP,∴PN=NC=EB=PE=2,
∴NE=NP+PE=2+2=4, ∴C(3,4).
第2种情况,如图2, ∠PBC=90°,BP=BC,
过点C作CF⊥x轴于点F.
∵∠PBC=90°,∠EBP=45°,
∴∠CBF=∠PBE=45°.
又∵∠CFB=∠PEB=90°,BC=BP,
∴△CBF≌△PBE.
∴BF=CF=PE=EB=2,
∴OF=OB+BF=3+2=5, ∴C(5,2).
3种情况,如图3,∠PCB=90°,
∴∠CPB=∠EBP=45°,
∴△PCB≌△ BEP,
∴PC=CB=PE=EB=2,∴C(3,2).
∴以PB为边在第一象限作等腰直角三角形BPC,
综上所述点C的坐标是(3,4)或(5,2)或(3,2).
本题考核知识点:本题主要考查一次函数的应用和等腰三角形的性质. 解题关键点:掌握一次函数和等腰三角形性质,运用分类思想.
18、(1)①,②平行四边形;(2)结论①不变,结论②由平行四边形变为菱形,理由详见解析;(3)
【解析】
(1)根据三角形中位线定理,即可得出,进而得解;由三角形中位线定理得出DE∥AC, ,即可判定为平行四边形;
(2)由中位线定理得出,,,然后根据,得出,,即可判定平行四边形是菱形;
(3)首先设,,根据等腰直角三角形的性质,得出,进而得出,然后由三角形中位线定理得,,经分析可知:,且和互相垂直平分,即可得出四边形为正方形,又由,,,得出四边形为矩形,即可得出面积比.
【详解】
解:(1)①,②平行四边形;
由已知条件和三角形中位线定理,得
又∵
∴
②由三角形中位线定理得,
DE∥AC, ,
∴四边形是平行四边形;
(2)结论①不变,结论②由平行四边形变为菱形,
四边形是菱形的理由是:
∵,都是的中位线,
∴,
∴四边形是平行四边形
∵是的中位线,
∴
∵
∴,
∴
∴平行四边形是菱形.
(3)设,
当,是等腰直角三角形,
∴
∴
由三角形中位线定理得,,
∴,且和互相垂直平分
∴四边形为正方形,
∵,EF⊥AD,
∴
∴
又∵,
∴四边形为矩形,
∴,
∴所求面积比为
(1)此题主要考查三角形中位线定理的应用,利用其进行等式转换和平行四边形的判定,即可得解;
(2)此题主要考查菱形的判定,熟练掌握,即可解题;
(3)此题主要考查正方形和矩形的判定,关键是利用正方形和矩形的面积关系式,即可解题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据二次根式的性质,进行计算即可解答
【详解】
解:﹣.
故答案为:﹣ .
此题考查二次根式的化简,解题关键在于掌握运算法则
20、1
【解析】
首先根据频率的计算公式求得第五组的频数,然后利用总数减去其它组的频数即可求解.
【详解】
第五组的频数是10×0.2=8,
则第六组的频数是10-5-10-6-7-8=1.
故答案是:1.
本题是对频率、频数灵活运用的综合考查.
注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.
21、1.
【解析】
根据正方形的性质可得出AB=AD、∠BAD=90°,由AB=AG、∠AGB=70°利用等腰三角形的性质及三角形内角和定理可求出∠BAG的度数,由∠DAG=90°-∠BAG可求出∠DAG的度数,由等腰三角形的性质结合三角形内角和定理可求出∠AGD的度数,再由∠BGD=∠AGB+∠AGD可求出∠BGD的度数.
【详解】
∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°.
∵AB=AG,∠AGB=70°,
∴∠BAG=180°﹣70°﹣70°=40°,
∴∠DAG=90°﹣∠BAG=50°,
∴∠AGD=(180°﹣∠DAG)=65°,
∴∠BGD=∠AGB+∠AGD=1°.
故答案为:1.
本题考查了正方形的性质、等腰三角形的性质以及三角形内角和定理,根据等腰三角形的性质结合三角形内角和定理求出∠AGD的度数是解题的关键.
22、22.5°
【解析】
根据正方形的对角线平分一组对角求出∠CBE=45°,再根据等腰三角形两底角相等求出∠BCE=67.5°,然后根据∠DCE=∠BCD-∠BCE计算即可得解.
【详解】
∵四边形ABCD是正方形,
∴∠CBE=45°,∠BCD=90°,
∵BE=BC,
∴∠BCE=(180°-∠BCE)=×(180°-45°)=67.5°,
∴∠DCE=∠BCD-∠BCE=90°-67.5°=22.5°.
故答案为22.5°.
本题考查了正方形的性质,等腰三角形的性质,主要利用了正方形的对角线平分一组对角,需熟记.
23、1
【解析】
试题分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.
试题解析:∵CE∥BD,DE∥AC,
∴四边形CODE是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD=4,OA=OC,OB=OD,
∴OD=OC=AC=2,
∴四边形CODE是菱形,
∴四边形CODE的周长为:4OC=4×2=1.
考点: 1.菱形的判定与性质;2.矩形的性质.
二、解答题(本大题共3个小题,共30分)
24、(1)y=;
(2)Q1(,4);Q2(4,),Q3(4,);
(3)s1=8t(0<t≤1);s2=﹣2t2+2t+8(1≤t≤2);s3=﹣10t+1(2≤t≤).
【解析】
试题分析:(1)根据正方形ABCD的边长为4,可得C的坐标为(4,4),再用待定系数法求出反比例函数解析式;
(2)分点Q在CD,BC,AB边上,根据全等三角形的判定和性质求得点Q的坐标;
(3)分点Q在CD,BC,AB边上,由三角形面积公式和组合图形的面积计算即可求解.
试题解析:解:(1)∵正方形ABCD的边长为4,
∴C的坐标为(4,4),
设反比例解析式为y=,
将C的坐标代入解析式得:k=16,则反比例解析式为y=;
(2)当Q在DC上时,如图所示:
此时△APD≌△CQB,
∴AP=CQ,即t=4﹣4t,解得t=,
则DQ=4t=,即Q1(,4);
当Q在BC边上时,有两个位置,如图所示:
若Q在上边,则△QCD≌△PAD,
∴AP=QC,即4t﹣4=t,解得t=,
则QB=8﹣4t=,此时Q2(4,);
若Q在下边,则△APD≌△BQA,
则AP=BQ,即8﹣4t=t,解得t=,
则QB=,即Q3(4,);
当Q在AB边上时,如图所示:
此时△APD≌△QBC,
∴AP=BQ,即4t﹣8=t,解得t=,
因为0≤t≤,所以舍去.
综上所述Q1(,4); Q2(4,),Q3(4,);
(3)当0<t≤1时,Q在DC上,DQ=4t,则s=×4t×4=8t;
当1≤t≤2时,Q在BC上,则BP=4﹣t,CQ=4t﹣4,AP=t,
则s=S正方形ABCD﹣S△APD﹣S△BPQ﹣S△CDQ=16﹣AP•AD﹣PB•BQ﹣DC•CQ=16﹣t×4﹣(4﹣t)•[4﹣(4t﹣4)]﹣×4(4t﹣4)═﹣2t2+2t+8;
当2≤t≤时,Q在AB上,PQ=12﹣5t,则s=×4×(12﹣5t),即s=﹣10t+1.
总之,s1=8t(0<t≤1);
s2=﹣2t2+2t+8(1≤t≤2);
s3=﹣10t+1(2≤t≤).
考点:反比例函数综合题.
25、AC=2
【解析】
可证明△ACD∽△ABC,则,即得出AC2=AD•AB,从而得出AC的长.
【详解】
∵∠ACD=∠B,∠A=∠A,
∴△ACD∽△ABC,
∴,
∴AC2=AD·AB,
∴AC2=12,
∴AC=2 (负值舍去)
本题考查了相似三角形的判定和性质,两个角相等,两个三角形相似.
26、(1)四边形ABCD是垂美四边形,证明见解析 (2)①,证明见解析;②四边形FMAN是矩形,证明见解析 (3)
【解析】
(1)根据垂直平分线的判定定理证明即可;
(2)①根据垂直的定义和勾股定理解答即可;②根据在Rt△ABC中,点F为斜边BC的中点,可得,再根据△ABD和△ACE是等腰三角形,可得,再由(1)可得,,从而判定四边形FMAN是矩形;
(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算即可.
【详解】
(1)四边形ABCD是垂美四边形
连接AC、BD
∵
∴点A在线段BD的垂直平分线上
∵
∴点C在线段BD的垂直平分线上
∴直线AC是线段BD的垂直平分线
∴
∴四边形ABCD是垂美四边形;
(2)①,理由如下
如图,已知四边形ABCD中,,垂足为E
由勾股定理得
②四边形FMAN是矩形,理由如下
如图,连接AF
∵在Rt△ABC中,点F为斜边BC的中点
∵△ABD和△ACE是等腰三角形
由(1)可得,
∵
∴四边形FMAN是矩形;
(3)连接CG、BE,
,即
在△AGB和△ACE中
∵
,即
∴四边形CGEB是垂美四边形
由(2)得
.
本题考查了垂美四边形的问题,掌握垂直平分线的判定定理、垂直的定义、勾股定理、垂美四边形的性质、全等三角形的性质以及判定定理是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
班级
中位数(分)
众数(分)
九(1)
85
九(2)
80
班级
中位数(分)
众数(分)
九(1)
85
85
九(2)
80
100
江苏省无锡市江阴市月城中学2024年九上数学开学复习检测试题【含答案】: 这是一份江苏省无锡市江阴市月城中学2024年九上数学开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省无锡市江阴市敔山湾实验学校2024-2025学年九上数学开学复习检测模拟试题【含答案】: 这是一份江苏省无锡市江阴市敔山湾实验学校2024-2025学年九上数学开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省无锡市江阴初级中学2025届九上数学开学教学质量检测试题【含答案】: 这是一份江苏省无锡市江阴初级中学2025届九上数学开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。