江苏省泰兴市分界镇初级中学2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】
展开
这是一份江苏省泰兴市分界镇初级中学2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图是根据某班 40 名同学一周的体育锻炼情况绘制的统计图,该班 40 名同学一周参加体育锻炼时间的中位数,众数分别是( )
A.10.5,16B.8.5,16C.8.5,8D.9,8
2、(4分)下列分解因式正确的是( )
A.-a+a3=-a(1+a2)B.2a-4b+2=2(a-2b)
C.a2-4=(a-2)2D.a2-2a+1=(a-1)2
3、(4分)若分式的值为零,则x的值是( )
A.2或-2B.2C.-2D.4
4、(4分)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )
A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形
B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形
C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形
D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形
5、(4分)下列各组长度的线段(单位:)中,成比例线段的是( )
A.1,2,3,4B.1,2,3,6C.2,3,4,5D.1,3,5,10
6、(4分)一家鞋店对上周某一品牌女鞋的销售量统计如下:
该鞋店决定本周多进一些尺码为23.5厘米的该品牌女鞋,影响鞋店决策的统计量是( )
A.方差B.中位数C.平均数D.众数
7、(4分)某校八年级有452名学生,为了了解这452名学生的课外阅读情况,从中抽取50名学生进行统计.在这个问题中,样本是( )
A.452名学生B.抽取的50名学生
C.452名学生的课外阅读情况D.抽取的50名学生的课外阅读情况
8、(4分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.1.其中说法正确的是( )
A.①②③B.①②④C.①③④D.①②③④
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在正方形ABCD中,对角线AC、BD相交于点O.如果AC =,那么正方形ABCD的面积是__________.
10、(4分)分解因式=____________.
11、(4分)如图,正方形的边长为12,点、分别在、上,若,且,则______.
12、(4分)如图,正方形ABCD是由两个小正方形和两个小长方形组成的,根据图形写出一个正确的等式:_________.
13、(4分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简再求值:,其中.
15、(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.
(1)求证:四边形AODE是矩形;
(2)若AB=2,AC=2,求四边形AODE的周长.
16、(8分)计算下列各题:(1) ;(2).
17、(10分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.
(1)求这条直线的解析式;
(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).
①求n的值及直线AD的解析式;
②求△ABD的面积;
③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.
18、(10分)如图,在中,,,点在延长线上,点在上,且,延长交于点,连接、.
(1)求证:;
(2)若,则__________.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)两个相似三角形的周长分别为8和6,若一个三角形的面积为36,则另一个三角形的面积为________.
20、(4分)若一组数据1,3,x,4,5,6的平均数是4,则这组数据的众数是_____.
21、(4分)已知P1(x1,y1),P2(x2 ,y2)两点都在反比例函数的图象上,且x1< x2 < 0,则y1 ____ y2.(填“>”或“
【解析】
根据反比例函数的增减性,k=1>0,且自变量x<0,图象位于第三象限,y随x的增大而减小,从而可得结论.
【详解】
在反比例函数y=中,k=1>0,
∴该函数在x<0内y随x的增大而减小.
∵x1<x1<0,
∴y1>y1.
故答案为:>.
本题考查了反比例函数的性质,解题的关键是得出反比例函数在x<0内y随x的增大而减小.本题属于基础题,难度不大,解决该题型题目时,根据系数k的取值范围确定函数的图象增减性是关键.
22、1
【解析】
利用因式分解法先求出方程的两个根,再利用勾股定理进行求解即可.
【详解】
方程x2-14x+48=0,即(x-6)(x-8)=0,
则x-6=0或x-8=0,
解得:x1=6,x2=8,
则矩形的对角线长是:=1,
故答案为:1.
本题考查了矩形的性质,勾股定理,解一元二次方程等知识,熟练掌握相关知识是解题的关键.
23、 .
【解析】
分析:根据勾股定理分别求出直角三角形的斜边长,从而得出一般性的规律.
详解:∵,,,……,.
点睛:本题主要考查的是直角三角形的勾股定理以及规律的发现,属于基础题型.解决这种问题的关键就是得出前面几个三角形的斜边,从而得出一般性的规律.
二、解答题(本大题共3个小题,共30分)
24、(1),;(2)2,2,1,1(答案不唯一);(3)=7或=1.
【解析】
(1)∵,
∴,
∴a=m2+3n2,b=2mn.
故答案为m2+3n2,2mn.
(2)设m=1,n=2,∴a=m2+3n2=1,b=2mn=2.
故答案为1,2,1,2(答案不唯一).
(3)由题意,得a=m2+3n2,b=2mn.
∵2=2mn,且m、n为正整数,
∴m=2,n=1或m=1,n=2,
∴a=22+3×12=7,或a=12+3×22=1.
25、(1)详见解析;(2)
【解析】
(1)依据HL判定Rt△ADE≌Rt△ADF,即可得出AE=AF;
(2)判定△DEM≌△DFN,可得S△DEM=S△DFN,进而得到S四边形AMDN=S四边形AEDF,求得S△ADF=AF×DF=2,即可得出结论.
【详解】
(1)∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,
∴DE=DF,
又∵DE⊥AB于点E,DF⊥AC于点F,
∴∠AED=∠AFD=90°,
又∵AD=AD,
∴Rt△ADE≌Rt△ADF(HL),
∴AE=AF;
(2)∵∠MDN+∠BAC=180°,
∴∠AMD+∠AND=180°,
又∵∠DNF+∠AND=180°
∴∠EMD=∠FND,
又∵∠DEM=∠DFN,DE=DF,
∴△DEM≌△DFN,
∴S△DEM=S△DFN,
∴S四边形AMDN=S四边形AEDF,
∵AD=6,DF=2 ,
∴Rt△ADF中,AF=
∴
∴
本题主要考查了全等三角形的性质和判定、角平分线的性质定理等知识;熟练掌握全等三角形的判定与性质是解决问题的关键.
26、证明见解析
【解析】
根据全等三角形的判定得出△BAE与△CAF全等,进而解答即可.
【详解】
证明:∵∠BAC=∠EAF,
∴∠BAC﹣∠EAC=∠EAF﹣∠EAC,
∴∠BAE=∠CAF,
在△BAE与△CAF中,
,
∴△BAE≌△CAF(SAS)
∴∠AEB=∠AFC.
本题考查全等三角形的判定和性质,解题的关键是根据全等三角形的判定得出△BAE与△CAF全等.
题号
一
二
三
四
五
总分
得分
尺码/厘米
22
22.5
23
23.5
24
24.5
25
销售量/双
1
2
5
11
7
3
1
相关试卷
这是一份江苏省启东中学2024-2025学年数学九年级第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省泰兴市实验初级中学数学九年级第一学期开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省中学山市溪角初级中学九年级数学第一学期开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。