江苏省南京市南师附中江宁分校2024年九年级数学第一学期开学复习检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)用配方法解方程x2﹣2x﹣1=0,原方程应变形为( )
A.(x﹣1)2=2 B.(x+1)2=2 C.(x﹣1)2=1 D.(x+1)2=1
2、(4分)如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )
A.该班总人数为50B.步行人数为30
C.乘车人数是骑车人数的2.5倍D.骑车人数占20%
3、(4分)已知三角形两边长为2和6,要使该三角形为直角三角形,则第三边的长为( )
A.B.C.或D.以上都不对
4、(4分)在平面直角坐标系中,点M(3,2)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
5、(4分)如图,平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中有平行四边形( )
A.4个B.5个C.8个D.9个
6、(4分)在中,点、分别为边、的中点,则与的面积之比为
A.B.C.D.
7、(4分)计算的结果是( )
A.B.C.D.
8、(4分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为( )
A.3B.4C.5D.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形ABCD中,对角线AC与BD相交于点O,AB=3,BC=4,则△AOB的周长为_____.
10、(4分)若以二元一次方程的解为坐标的点(x,y) 都在直线上,则常数b=_______.
11、(4分)若a4·ay=a19,则 y=_____________.
12、(4分)已知关于的方程会产生增根,则__________.
13、(4分)如图,一张矩形纸片的长AD=12,宽AB=2,点E在边AD上,点F在边BC上,将四边形ABFE沿直线EF翻折后,点B落在边AD的三等分点G处,则EG的长为_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A(0,4),B(﹣4,2),C(0,2).
(1)画△A1B1C1,使它与△ABC关于点C成中心对称;
(2)平移△ABC,使点A的对应点A2坐标为(﹣2,4),画出平移后对应的△A2B2C2;
(3)若将△A1B1C1绕点P旋转可得到△A2B2C2,请直接写出旋转中心P的坐标.
15、(8分)如图,在中,,,求:
的长;
的面积;
16、(8分)如图,在正方形中,点分别是上的点,且.求证:.
17、(10分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.
(1)请画出平移后的△A′B′C′(不写画法);
(2)并直接写出点B′、C′的坐标:B′( )、C′( );
(3)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是( ).
18、(10分)已知:梯形中,,联结(如图1). 点沿梯形的边从点移动,设点移动的距离为,.
(1)求证:;
(2)当点从点移动到点时,与的函数关系(如图2)中的折线所示. 试求的长;
(3)在(2)的情况下,点从点移动的过程中,是否可能为等腰三角形?若能,请求出所有能使为等腰三角形的的取值;若不能,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:.“解密世园会”、.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择条线路游览,每条线路被选择的可能性相同.李欣和张帆恰好选择同线路游览的概率为_______.
20、(4分)若关于x的一元一次不等式组有解,则m的取值范围为__________.
21、(4分)如图,一束光线从y轴上的点A(0,1)出发,经过x轴上的点C反射后经过点B(6,2),则光线从A点到B点经过的路线长度为 .
22、(4分)如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为_____________
23、(4分)函数中,自变量x的取值范围是 ▲ .
二、解答题(本大题共3个小题,共30分)
24、(8分)先化简:(1﹣)•,然后a在﹣1,0,1三个数中选一个你认为合适的数代入求值.
25、(10分)把一个足球垂直水平地面向上踢,时间为(秒)时该足球距离地面的高度(米)适用公式
经过多少秒后足球回到地面?
经过多少秒时足球距离地面的高度为米?
26、(12分)如图,△ABC中,∠A=60°,∠C=40°,DE垂直平分BC,连接BD.
(1)尺规作图:过点D作AB的垂线,垂足为F.(保留作图痕迹,不写作法)
(2)求证:点D到BA,BC的距离相等.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】分析:先把常数项移到方程右侧,再把方程两边加上1,然后把方程左边利用完全公式表示即可.
详解:x1﹣1x=1,
x1﹣1x +1=1,
(x﹣1)1=1.
故选A.
点睛:本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)1=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.
2、B
【解析】
根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.
【详解】
A、总人数是:25÷50%=50(人),故A正确;
B、步行的人数是:50×30%=15(人),故B错误;
C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;
D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.
由于该题选择错误的,
故选B.
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
3、C
【解析】
根据勾股定理,分所求第三边为斜边和所求第三边为直角边两种情况计算即可.
【详解】
解:根据勾股定理分两种情况:
(1)当所求第三边为斜边时,第三边长为:;
(1)当所求第三边为直角边时,第三边长为:;
所以第三边长为:或.
故选C .
本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a1+b1=c1.也就是说,直角三角形两条直角边的平方和等于斜边的平方.
4、A
【解析】
根据平面直角坐标系中,点的坐标与点所在的象限的关系,即可得到答案.
【详解】
∵3>0,2>0,
∴点M(3,2)在第一象限,
故选A.
本题主要考查点的坐标与点所在象限的关系,掌握点的坐标的正负性与所在象限的关系,是解题的关键.
5、D
【解析】
首先根据已知条件找出图中的平行线段,然后根据两组对边分别平行的四边形是平行四边形,来判断图中平行四边形的个数.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,CD∥AB,
又∵EF∥BC,GH∥AB,
∴∴AB∥GH∥CD,AD∥EF∥BC,
∴平行四边形有:□ ABCD,□ABHG,□CDGH,□BCFE,□ADFE,□AGOE,□BEOH,□OFCH,□OGDF,共9个.即共有9个平行四边形.
故选D.
本题考查平行四边形的判定与性质,解题的关键是根据已知条件找出图中的平行线段.
6、C
【解析】
由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,则DE∥BC,进而得出△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.
【详解】
如图所示,
∵点D、E分别为边AB、AC的中点,
∴DE为△ABC的中位线,
∴DE∥BC,DE=BC,
∴△ADE∽△ABC,
∴.
故选C.
本题考查了相似三角形的判定与性质、三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.
7、A
【解析】
根据合并同类二次根式即可.
【详解】
解:
故答案选:A
本题考查了二次根式的加减运算,掌握合并同类二次根式是解题的关键.
8、A
【解析】
根据已知条件易证△DEO≌△BFO,可得△DEO和△BFO的面积相等,由此可知阴影部分的面积等于Rt△ADC的面积,继而求得阴影部分面积.
【详解】
∵四边形ABCD是矩形,AB=2,BC=3,
∴AD∥BC,AD=BC=3,AB=CD=2,OB=OD,
∴∠DEO=∠BFO,
在△DEO和△FBO中,
,
∴△DEO≌△BFO,
即△DEO和△BFO的面积相等,
∴阴影部分的面积等于Rt△ADC的面积,
即阴影部分的面积是:
故选A..
本题考查了矩形的性质及全等三角形的判定与性质,证明△DEO≌△BFO,得到阴影部分的面积等于Rt△ADC的面积是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由矩形的性质可得AC=BD,AO=CO,BO=DO,∠ABC=90°,由勾股定理可求AC=5,即可求△AOB的周长.
【详解】
∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∠ABC=90°.
∵AB=3,BC=4,∴AC5,∴AO=BO,∴△AOB的周长=AB+AO+BO=3+5=1.
故答案为:1.
本题考查了矩形的性质,勾股定理,求出AO=BO的长是本题的关键.
10、1.
【解析】
直线解析式乘以1后和方程联立解答即可.
【详解】
因为以二元一次方程x+1y-b=0的解为坐标的点(x,y)都在直线上,
直线解析式乘以1得1y=-x+1b-1,变形为:x+1y-1b+1=0
所以-b=-1b+1,
解得:b=1,
故答案为1.
此题考查一次函数与二元一次方程问题,关键是直线解析式乘以1后和方程联立解答.
11、1
【解析】
利用同底数幂相乘,底数不变指数相加计算,再根据指数相同列式求解即可.
【详解】
解: a4•ay=a4+y=a19,∴4+y=19,解得y=1
故答案为:1.
本题主要考查同底数幂相乘,底数不变指数相加的性质,熟练掌握性质是解题的关键.
12、4
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入整式方程算出未知字母的值.
【详解】
方程两边都乘(x−2),得
2x−m=3(x−2),
∵原方程有增根,
∴最简公分母x−2=0,即增根为x=2,
把x=2代入整式方程,得m=4.
故答案为:4.
此题考查分式方程的增根,解题关键在于根据方程有增根进行解答.
13、或
【解析】
如图,作GH⊥BC于H.则四边形ABHG是矩形.G是AD的三等分点,推出AG=4或8,证明EG=FG=FB,设EG=FG=FB=x,分两种情形构建方程即可解决问题.
【详解】
解:如图,作GH⊥BC于H.则四边形ABHG是矩形.
∵G是AD的三等分点,
∴AG=4或8,
由翻折可知:FG=FB,∠EFB=∠EFG,设FG=FB=x.
∵AD∥BC,
∴∠FEG=∠EFB=∠GFE,
∴EG=FG=x,
在Rt△FGH中,∵FG2=GH2+FH2,
∴x2=22+(4-x)2或x2=22+(8-x)2
解得:x=或,
故答案为或.
本题考查翻折变换,矩形的性质,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)见解析;(3)P(﹣1,2)
【解析】
(1)分别作出,,的对应点,,,顺次连接即可.
(2)分别求出,,的对应点,,顺次连接即可.
(3)利用旋转对称图形得出对应点的连线的交点进而得出答案..
【详解】
解:(1)如图所示,△即为所求.
(2)如图所示,△即为所求.
(3).
理由如下:∵△A1B1C1与△A2B2C2关于P点成中心对称,
∴P点是B1B2的中点,
又∵B1B2的坐标为(4,2)、(-6,2),
∴P坐标为(-1,2).
本题考查作图旋转变换,平移变换等知识,根据题意得出对应点坐标是解题关键.
15、 (1);(2).
【解析】
(1)根据勾股定理进行计算即可,
(2)根据直角三角形面积公式直接代入计算即可.
【详解】
解:,,,\
根据勾股定理可得:
,
.
本题主要考查勾股定理和直角三角形面积计算,解决本题的关键是要熟练掌握勾股定理和直角三角形面积计算公式.
16、见解析
【解析】
证得∠ADE=∠FAB,由ASA证得△DAE≌△ABF,即可得出结论.
【详解】
四边形是正方形
本题考查了正方形的性质、直角三角形的性质、全等三角形的判定与性质、熟练掌握正方形的性质是关键.
17、(1)答案见解析;(2)B′(﹣4,1)、C′(﹣1,﹣1);(3)(a﹣5,b﹣2).
【解析】
(1)根据网格结构找出点B、C平移后的位置,然后顺次连接即可;
(2)根据平面直角坐标系写出点B′、C′的坐标即可;
(3)根据平移规律写出即可.
【详解】
解:(1)△A′B′C′如图所示;
(2)B′(﹣4,1)、C′(﹣1,﹣1);
(3)∵点A(3,4)、A′(﹣2,2),
∴平移规律为向左平移5个单位,向下平移2个单位,
∴P(a,b)平移后的对应点P′的坐标是(a﹣5,b﹣2).
故答案为B′(﹣4,1)、C′(﹣1,﹣1);(a﹣5,b﹣2).
本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
18、(1)证明见解析;(2);(3),,,,或
【解析】
(1)由平行线的性质、直角三角形的性质、等腰三角形的性质得出∠ABD=∠CDB,∠A+∠ADC=180°,∠ABD+∠CBD=90°,∠ABD=∠ADB,得出∠A+2∠ABD=180°,2∠ABD+2∠CBD=180°,即可得出结论;
(2)作DE⊥AB于E,则DE=BC=3,CD=BE,由勾股定理求出AE==4,得出CD=BE=AB-AE=1;
(3)分情况讨论:①点P在AB边上时;②点P在BC上时;③点P在AD上时;由等腰三角形的性质和勾股定理即可得出答案.
【详解】
(1)证明:∵,
∴,
又∵,
∴
∵,
∴,即
∴
(2)解:由点,得,
由点点的横坐标是8,得时,∴
作于,∵,∴,
∵,∴
(3)
情况一:点在边上,作,
当时,是等腰三角形,此时,,
∴
情况二:点在边上,当时是等腰三角形,
此时,,,
∴在中,,
即,
∴
情况三:点在边上时,不可能为等腰三角形
情况四:点在边上,有三种情况
1°作,当时,为等腰三角形,
此时,∵,
∴,
又∵,
∴
∴,
∴,
∴,
∴
∴
2°当时为等腰三角形,
此时,
3°当点与点重合时为等腰三角形,
此时或.
本题是四边形综合题目,考查了梯形的性质、平行线的性质、等腰三角形的性质与判定、直角三角形的性质、勾股定理等知识;本题综合性强,有一定难度.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.
【详解】
画树状图分析如下:
共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,
∴李欣和张帆恰好选择同一线路游览的概率为.
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
20、m.
【解析】
首先解不等式,利用m表示出两个不等式的解集,根据不等式组有解即可得到关于m的不等式,从而求解.
【详解】
,
解①得:x<2m,解②得:x>2﹣m,
根据题意得:2m>2﹣m,解得:m.
故答案为:m.
本题考查了解不等式组,解决本题的关键是熟记确定不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
21、3
【解析】
解:如图,过点B作BD⊥x轴于点D,根据已知条件易得△AOC∽△BDC,
根据相似三角形对应边的比相等可得,
又因点A(0,1),点B(6,2),
可得0A=1,BD=2,OD=6,
代入即可求得OC=2,CD=4,
由勾股定理求得AC=,BD=2,
即可得光线从A点到B点经过的路线长度为3.
考点:相似三角形的应用;坐标与图形性质.
22、2
【解析】
解:∵四边形ABCD是菱形,AC=2,BD=,
∴∠ABO=∠CBO,AC⊥BD.
∵AO=1,BO=,
∴AB=2,
∴sin∠ABO==
∴∠ABO =30°,
∴∠ABC=∠BAC =60°.
由折叠的性质得,EF⊥BO,BE=EO,BF=FO,∠BEF=∠OEF,;
∵∠ABO=∠CBO,
∴BE=BF,
∴△BEF是等边三角形,
∴∠BEF=60°,
∴∠OEF=60°,
∴∠AEO=60°,
∵∠BAC =60°.
∴△AEO是等边三角形,,
∴AE=OE,
∴BE=AE,同理BF=FC,
∴EF是△ABC的中位线,
∴EF=AC=1,AE=OE=1.
同理CF=OF=1,
∴五边形AEFCD的周长为=1+1+1+2+2=2.
故答案为2.
23、.
【解析】
试题分析:由已知:x-2≠0,解得x≠2;
考点:自变量的取值范围.
二、解答题(本大题共3个小题,共30分)
24、2
【解析】
根据分式的混合运算进行化简,再代入符合题意的值.
【详解】
==a+1
∵a≠0,a≠-1,故把a=1代入原式得2.
此题主要考查分式的计算,解题的关键是熟知分式的运算法则.
25、(1)秒后足球回到地面;(2)经过秒或秒足球距地面的高度为米.
【解析】
(1)令,解方程即可得出答案;
(2)令,解方程即可.
【详解】
解:令,
解得:(舍),,
∴秒后足球回到地面;
令,
解得:.
即经过秒或秒,足球距地面的高度为米.
本题考查的知识点是二次函数的实际应用,根据题意分别令为不同的值解答本题.
26、(1)如图所示,DF即为所求,见解析;(2)见解析.
【解析】
(1)直接利用过一点作已知直线的垂线作法得出符合题意的图形;
(2)根据角平分线的性质解答即可.
【详解】
(1)如图所示,DF即为所求:
(2)∵△ABC中,∠A=60°,∠C=40°,
∴∠ABC=80°,
∵DE垂直平分BC,
∴BD=DC,
∴∠DBC=∠C=40°,
∴∠ABD=∠DBC=40°,
即BD是∠ABC的平分线,
∵DF⊥AB,DE⊥BC,
∴DF=DE,
即点D到BA,BC的距离相等.
此题主要考查了复杂作图,正确利用角平分线的性质解答是解题关键.
题号
一
二
三
四
五
总分
得分
2024-2025学年江苏省南京市南师附中树人学校数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2024-2025学年江苏省南京市南师附中树人学校数学九年级第一学期开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省南京市南师附中江宁分校2023-2024学年九上数学期末教学质量检测试题含答案: 这是一份江苏省南京市南师附中江宁分校2023-2024学年九上数学期末教学质量检测试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,点P,已知,则,已知3x=4y,则=等内容,欢迎下载使用。
南京市南师附中江宁分校2023-2024学年数学八上期末经典试题含答案: 这是一份南京市南师附中江宁分校2023-2024学年数学八上期末经典试题含答案,共8页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。