2024-2025学年江苏省南京市南师附中树人学校数学九年级第一学期开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各式从左到右的变形中,是因式分解的是( )
A.B.
C.D.
2、(4分)如图,一次函数y=kx+b的图象经过点A(1,0),B(2,1),当因变量y>0时,自变量x的取值范围是( )
A.x>0B.x<0C.x>1D.x<1
3、(4分)如图,菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC、CD、BD上的任意一点,则PK+KQ的最小值为( )
A.B.C.2D.
4、(4分)用反证法证明“四边形中至少有一个角是钝角或直角”,则应先假设( )
A.至少有一个角是锐角B.最多有一个角是钝角或直角
C.所有角都是锐角D.最多有四个角是锐角
5、(4分)在下列图案中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
6、(4分)某校七年级体操比赛中,各班代表队得分如下(单位:分):,则各班代表队得分的中位数和众数分别是( )
A.7,7B.7,8C.8,7D.8,8
7、(4分)如图,在□ABCD中,AC与BD相交于点O,点E是边BC的中点,AB = 4,则OE的长是 ( )
A.2B.
C.1D.
8、(4分)下列事件中,是必然事件的为( )
A.明天会下雨
B.x是实数,x2<0
C.两个奇数之和为偶数
D.异号两数相加,和为负数
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足: (其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m.
10、(4分)如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=_____.
11、(4分)若反比例函数y=的图象在二、四象限,则常数a的值可以是_____.(写出一个即可)
12、(4分)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是_____.
13、(4分)如图,平面直角坐标系中,平行四边形的顶点,边落在正半轴上,为线段上一点,过点分别作,交平行四边形各边如图.若反比例函数的图象经过点,四边形的面积为,则的值为__.
三、解答题(本大题共5个小题,共48分)
14、(12分)解不等式组:
请结合题意填空,完成本题解答:
(1)解不等式①,得______;
(2)解不等式②,得______;
(3)把不等式①和②的解集在数轴上表示出来;
(4)原不等式组的解集为______.
15、(8分)如图,平行四边形ABCD,以点B为圆心,BA长为半径作圆弧,交对角线BD于点E,连结AE并延长交CD于点F,求证:DF=DE.
16、(8分)如图,已知平面直角坐标系中,直线与x轴交于点A,与y轴交于B,与直线y=x交于点C.
(1)求A、B、C三点的坐标;
(2)求△AOC的面积;
(3)已知点P是x轴正半轴上的一点,若△COP是等腰三角形,直接写点P的坐标.
17、(10分)解方程:x2-1= 4x
18、(10分)如图,直线y= x+6分别与x轴、y轴交于A、B两点:直线y= x与AB于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的进度沿x轴向左运动.过点E作x轴的垂线,分別交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠的图形的周长为L个单位长度,点E的运动时间为t(秒).
(1)直接写出点C和点A的坐标.
(2)若四边形OBQP为平行四边形,求t的值.
(3)0
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了100米,则山坡的高度BC为_____米.
20、(4分)公元9世纪,阿拉伯数学家阿尔•花拉子米在他的名著《代数学》中用图解一元二次方程,他把一元二次方程写成的形式,并将方程左边的看作是由一个正方形(边长为)和两个同样的矩形(一边长为,另一边长为)构成的矩尺形,它的面积为,如图所示。于是只要在这个图形上添加一个小正方形,即可得到一个完整的大正方形,这个大正方形的面积可以表小为:___________ ,整理,得,因为表示边长,所以 ___________.
21、(4分)的整数部分是a,小数部分是b,则________.
22、(4分)计算__.
23、(4分)如果关于x的方程bx2=2有实数解,那么b的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)用纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数)
(1)根据题意,填写下表:
(2)设在甲复印店复印收费元,在乙复印店复印收费元,分别写出,关于的函数关系式;
(3)顾客如何选择复印店复印花费少?请说明理由.
25、(10分)如图,在平面直角坐标系,已知四边形是矩形,且(0,6),(8,0),若反比例函数的图象经过线段的中点,交于点,交于点.设直线的解析式为.
(1)求反比例函数和直线的解析式;
(2)求的面积:
(3)请直接写出不等式的解集.
26、(12分)七年级某班体育委员统计了全班同学 60 秒垫排球次数,并列出下列频数分布表:
(1)全班共有 名同学;
(2)垫排球次数 x 在 20≤x<40 范围的同学有 名,占全班人数的 %;
(3)若使垫排球次数 x 在 20≤x<40 范围的同学到九年级毕业时占全班人数的 87.12%,则八、九年级平均每年的垫排球次数增长率为多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.
【详解】
解:A、不是因式分解,故A错误;
B、是整式乘法,故B错误;
C、,故C错误;
D、,故D正确;
故选:D.
本题考查了因式分解的意义,关键是熟练掌握定义,区别开整式的乘除运算.
2、C
【解析】
由一次函数图象与x轴的交点坐标结合函数图象,即可得出:当x>1时,y>1,此题得解.
【详解】
解:观察函数图象,可知:当x>1时,y>1.
故选:C.
本题考查了一次函数图象上点的坐标特征、一次函数的图象以及一次函数的性质,观察函数图象,利用数形结合解决问题是解题的关键.
3、A
【解析】
先根据四边形ABCD是菱形可知,AD//BC,由∠A=120°可知∠B=60°,作点P关于直线BD的对称点P'',连接P'Q,PC,则P'Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP'⊥AB时PK+QK的值最小,再在Rt△BCP'中利用锐角三角函数的定义求出P'C的长即可。
【详解】
解:∵四边形ABCD是菱形,
∴AD//BC,
∵∠A=120°,
∴∠B=180°-∠A=180°-120°=60°,
作点P关于直线BD的对称点P',连接P'Q,P'C,则P'Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP'⊥AB时PK+QK的值最小,
在Rt△BCP'中,
∵BC=AB=2,∠B=60°,
∴
故选:A.
本题考查的是轴对称一最短路线问题及菱形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
4、C
【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立.
【详解】
用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:所有角都是锐角.
故选C.
此题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
5、C
【解析】
根据轴对称图形与中心对称图形的概念进行判断即可.
【详解】
A.不是轴对称图形,是中心对称图形,不合题意;
B.是轴对称图形,不是中心对称图形,不合题意;
C.是轴对称图形,也是中心对称图形,符合题意;
D.不是轴对称图形,是中心对称图形,不合题意,
故选C.
本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
6、A
【解析】
根据众数与中位数的定义分别进行解答即可.
【详解】
由于共有7个数据,则中位数为第4个数据,即中位数为7,
这组数据中出现次数最多的是7分,一共出现了3次,则众数为7,
故选:A.
考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.
7、A
【解析】
根据平行四边形的性质得BO=DO,所以OE是△ABC的中位线,根据三角形中位线定理三角形的中位线平行于第三边并且等于第三边的一半.
【详解】
解:在▱ABCD中,AC与BD相交于点O,
∴BO=DO,
∵点E是边BC的中点,
所以OE是△ABC的中位线,
∴OE=AB=1.
故选A.
本题利用平行四边形的性质和三角形的中位线定理求解,需要熟练掌握.
8、C
【解析】
直接利用随机事件以及必然事件、不可能事件分别分析得出答案.
【详解】
A、明天会下雨是随机事件,故此选项错误;
B、x是实数,x2<0,是不可能事件,故此选项错误;
C、两个奇数之和为偶数,是必然事件,正确;
D、异号两数相加,和为负数是随机事件,故此选项错误.
故选C.
此题主要考查了随机事件、必然事件、不可能事件,正确把握相关时间的定义是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、7
【解析】试题分析:将=10和g=10代入可得:S=-5+10t,则最大值为: =5,则离地面的距离为:5+2=7m.
考点:二次函数的最值.
10、1
【解析】
分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=3,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=AM=1.
详解:∵BD=CD,AB=CD,
∴BD=BA,
又∵AM⊥BD,DN⊥AB,
∴DN=AM=3,
又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,
∴∠P=∠PAM,
∴△APM是等腰直角三角形,
∴AP=AM=1,
故答案为1.
点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.
11、2(答案不唯一).
【解析】
由反比例函数y=的图象在二、四象限,可知a-3<0,据此可求出a的取值范围.
【详解】
∵反比例函数y=的图象在二、四象限,
∴a-3<0,
∴a<3,
∴a可以取2.
故答案为2.
本题考查了反比例函数的图像与性质,对于反比例函数(k是常数,k≠0),当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当 k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.
12、30°或150°.
【解析】
分等边△ADE在正方形的内部和外部两种情况分别求解即可得.
【详解】
如图1,
∵四边形ABCD为正方形,△ADE为等边三角形,
∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,
∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,
∴∠AEB=∠CED=15°,
则∠BEC=∠AED﹣∠AEB﹣∠CED=30°;
如图2,
∵△ADE是等边三角形,
∴AD=DE,
∵四边形ABCD是正方形,
∴AD=DC,
∴DE=DC,
∴∠CED=∠ECD,
∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,
∴∠CED=∠ECD=×(180°﹣30°)=75°,
∴∠BEC=360°﹣75°×2﹣60°=150°,
故答案为30°或150°.
本题考查了正方形的性质,等边三角形的性质,等腰三角形的判定与性质,熟记各性质、运用分类讨论思想画出符合题意的图形并准确识图是解题的关键.
13、
【解析】
过C作CM⊥x轴于点M,由平行四边形DCOE的面积可求得OE,过D作DN⊥x轴于点N,由C点坐标则可求得ON的长,从而可求得D点坐标,代入反比例函数解析式可求得k的值
【详解】
如图,过C作CM⊥x轴于点M,过D作DN⊥x轴于点N,则四边形CMND为矩形,
∵四边形OABC为平行四边形,
∴CD∥OE,且DE∥OC,
∴四边形DCOE为平行四边形,
∵C(2,5),
∴OM=2,CM=5,
由图可得,S△AOC=S△ABC=S▱ABCO,
又∵S△FCP=S△DCP且S△AEP=S△AGP,
∴S▱OEPF=S▱BGPD,
∵四边形BCFG的面积为10,
∴S▱CDEO=S▱BCFG=10,
∴S四边形DCOE=OE•CM=10,即5OE=10,解得OE=2,
∴CD=MN=2,
∴ON=OM+MN=2+2=4,DN=CM=5,
∴D(4,5),
∵反比例函数y=图象过点D,
∴k=4×5=20.
故答案为:20.
本题考查反比例函数系数k的几何意义、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件.
三、解答题(本大题共5个小题,共48分)
14、(1)x≤2;(2)x>-3;(3)把不等式①和②的解集在数轴上表示见解析;(4)-3<x≤2,
【解析】
(1)根据不等式的基本性质解不等式即可;
(2)根据不等式的基本性质解不等式即可;
(3)根据数轴表示解集的方法表示即可;
(4)根据不等式组公共解集的取法即可得出结论.
【详解】
(1)解不等式①,得x≤2
故答案为:x≤2;
(2)解不等式②,得x>-3
故答案为:x>-3;
(3)把不等式①和②的解集在数轴上表示出来如下:
(4)原不等式组的解集为-3<x≤2,
此题考查的是解不等式组,掌握不等式的基本性质和利用数轴表示解集是解决此题的关键.
15、见解析.
【解析】
欲证明DE=DF,只要证明∠DEF=∠DFE.
【详解】
证明:由作图可知:BA=BE,
∴∠BAE=∠BEA,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAE=∠DFE,
∵∠AEB=∠DEF,
∴∠DEF=∠DFE,
∴DE=DF.
本题考查平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
16、(1)A(-4,0);B(0,2);C(4,4);(2)1;(3)(4,0)或(1,0)或(,0).
【解析】
试题分析:(1)分别根据一次函数x=0或y=0分别得出点A和点B的坐标,将两个方程列成方程组,从而得出点C的坐标;(2)过点C作CD⊥x轴,从而得出AO和CD的长度,从而得出三角形的面积;(3)根据等腰三角形的性质得出点P的坐标.
试题解析:(1)当x=0得y=2,则B(0,2),当y=0得x=-4,则A(-4,0),
由于C是两直线交点,联立直线解析式为
解得:
则点C的坐标为(4,4)
(2)过点C作CD⊥x轴与点D
∴AO=4,CD=4
∴=AO·CD=×4×4=1.
(3)点P的坐标为(4,0)或(1,0)或(,0).
考点:(1)一次函数;(2)等腰三角形的性质
17、
【解析】
解:,
,
方程有两个不相等的实数根
本题考查一元二次方程,本题难度较低,主要考查学生对一元二次方程知识点的掌握,运用求根公式即可.
18、(1),;(2)2;(3).
【解析】
(1)把y= x+6和 y= x联立组成方程组,解方程组求得方程组的解,即可得点C的坐标;在直线y= x+6中,令y=0,求得x的值,即可得点A的坐标;(2)用t表示出点P、Q的坐标,求得PQ的长,由条件可知,BO∥QP,若使四边形OBQP为平行四边形,必须满足OB=QP,由此可得,即可求得t值;(3)由题意可知,正方形PQMN与△ACD重叠的图形是矩形,由此求得L与t之间的函数解析式即可.
【详解】
(1)C的坐标为( ),A的坐标为(8,0);
(2)∵点B直线y= x+6与y轴的交点,
∴B(0,6),
∴OB=6,
∵A的坐标为(8,0),
∴OA=8,
由题意可得,OE=8-t,
∴P(8-t,),Q(8-t,)
∴=10-2t,
由条件可知,BO∥QP,若使四边形OBQP为平行四边形,必须满足OB=QP,
所以有 ,解得t=2;
(3)当0<t<5时, .
本题是一次函数与结合图形的综合题,根据题意求得QP=10-2t是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
直接利用坡角的定义以及结合直角三角中30°所对的边与斜边的关系得出答案.
【详解】
由题意可得:AB=100m,∠A=30°,
则BC=AB=1(m).
故答案为:1.
此题主要考查了解直角三角形的应用,正确得出BC与AB的数量关系是解题关键.
20、1 1 1
【解析】
由图可知添加一个边长为1的正方形即可补成一个完整的正方形,由此即可得出答案.
【详解】
解:由图可知添加一个边长为1的正方形即可补成一个面积为36的正方形,
故第一个空和第二个空均应填1,
而大正方形的边长为x+1,
故x+1=6,
x=1,
故答案为:1,1,1.
此题是信息题,首先读懂题意,正确理解题目解题意图,然后抓住解题关键,可以探索得到大正方形的边长为x+1,而大正方形面积为36,由此可以求出结果.
21、2
【解析】
因为1<<2,由此得到的整数部分a,再进一步表示出其小数部分b.
【详解】
因为1<<2,
所以a=1,b=−1.
故(1+)(-1)=2,
故答案为:2.
此题考查估算无理数的大小,解题关键在于得到的整数部分a.
22、
【解析】
通过原式约分即可得到结果.
【详解】
解:原式=,
故答案为:.
此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.
23、b>1.
【解析】
先确定b≠1,则方程变形为x2=,根据平方根的定义得到>1时,方程有实数解,然后解关于b的不等式即可.
【详解】
根据题意得b≠1,
x2=,
当>1时,方程有实数解,
所以b>1.
故答案为:b>1.
本题考查了解一元二次方程−直接开平方法:形如x2=p或(nx+m)2=p(p≥1)的一元二次方程可采用直接开平方的方法解一元二次方程.
二、解答题(本大题共3个小题,共30分)
24、(1)1,3.3;(2);(3)当复印的页数大于60时,选择乙;小于60页时,选择甲;等于60页时,两家都可以,见解析
【解析】
(1)根据收费标准,列代数式求得即可;
(2)根据收费等于每页收费乘以页数即可求得;当一次复印页数不超过20时,根据收费等于每页收费乘以页数即可求得,当一次复印页数超过20时,根据题意求得;
(3)分三种情况分别计算自变量的取值,从而做出判断.
【详解】
解:(1)当时,甲复印店收费为:0.元,
当时,乙复印店收费为:元;
故答案为:1,3.3;
(2);
;
(3)①当时,即:,解得:;
②当时,即:,解得:;
③当时,即:,解得:;
因此,当时,乙的花费少,当时,甲、乙的花费相同,当时,甲的花费少.
答:当复印的页数大于60时,选择乙;小于60页时,选择甲;等于60页时,两家都可以.
考查一次函数的图象和性质、分段函数的实际意义等知识,正确的理解题意是关键,分类讨论思想方法的应用才是问题显得全面.
25、(1),;(2)22.5;(3)或
【解析】
(1)由点B、D的坐标结合矩形的性质即可得出点C的坐标,由中点的性质即可得出点A的坐标,再结合反比例函数图象上点的坐标特征即可得出k值,由此即可得出反比例函数解析式;由点F的横坐标、点E的纵坐标结合反比例函数解析式即可得出点E、F的坐标,再由点E、F的坐标利用待定系数法即可求出直线EF的解析式;
(2)通过分割图形并利用三角形的面积公式即可求出结论;
(3)观察函数图象,根据两函数图象的上下关系结合交点坐标即可得出不等式的解集.
【详解】
(1):(0,6),(8,0)∴(8,6)∴中点(4,3)∴∴
∴
设,
∴∴,∴,
∴∴,,∴
(2)
=22.5
(3)根据图像可得或.
本题考查了矩形的性质、反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、待定系数法求函数解析式以及三角形的面积公式,本题属于基础题难度不大,解决该题型题目时,求出点的坐标,再结合点的坐标利用待定系数法求出函数解析式是关键.
26、(1)50;(2)36,72;(3).
【解析】
(1)由图可知所有的频数之和即为人数;
(2)由图可知,把20≤x<40的两组频数相加即可,然后除以总人数即可得到答案;
(3)先计算到九年级20≤x<40的人数,然后设增长率为m,列出方程,解除m即可.
【详解】
解:(1)全班总人数=1+4+21+15+5+4=50(人),
故答案为:50.
(2)垫排球次数 x 在 20≤x<40 范围的同学有:21+15=36(人);
百分比为:;
故答案为:36,72.
(3)根据题意,设平均每年的增长率为m,则
解得:(舍去),
故八、九年级平均每年的垫排球次数增长率为:.
本题考查了一元二次方程的应用和频数分布表,频数分布表能够表示出具体数字,知道频率=频数÷总数和考查根据图表获取信息的能力,以及增长率的计算.解题的关键是在频数分布表中得到正确的信息.
题号
一
二
三
四
五
总分
得分
批阅人
一次复印页数(页
5
10
20
30
甲复印店收费(元
0.5
2
3
乙复印店收费(元
0.6
1.2
2.4
次数
0≤x<10
10≤x<20
20≤x<30
30≤x<40
40≤x<50
50≤x<60
频数
1
4
21
15
5
4
2024-2025学年江苏省南京市南师附中树人学校数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2024-2025学年江苏省南京市南师附中树人学校数学九年级第一学期开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省南京师大附中树人学校数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年江苏省南京师大附中树人学校数学九上开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
江苏省南京市南师附中树人学校2023-2024学年九上数学期末综合测试模拟试题含答案: 这是一份江苏省南京市南师附中树人学校2023-2024学年九上数学期末综合测试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。