江苏省句容市崇明片2024-2025学年数学九上开学考试模拟试题【含答案】
展开
这是一份江苏省句容市崇明片2024-2025学年数学九上开学考试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列由左到右变形,属于因式分解的是
A.B.
C.D.
2、(4分)若关于x的一元二次方程有实数根,则整数a的最大值是( )
A.4B.5C.6D.7
3、(4分)若,则下列不等式中成立的是( )
A.B.C.D.
4、(4分)一组数中,无理数的个数是( )
A.2B.3C.4D.5
5、(4分)正方形具有而菱形不具有的性质是( )
A.对角线互相平分B.对角线相等
C.对角线平分一组对角D.对角线互相垂直
6、(4分)下列等式正确的是( )
A.B.C.D.
7、(4分)下列各组数中,不是勾股数的为( )
A.3,4,5B.6,8,10C.5,12,13D.5,7,10
8、(4分)如图,已知△ACD∽△ADB,AC=4,AD=2,则AB的长为
A.1B.2
C.3D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,有一块矩形纸片ABCD,AB=8,AD=1.将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则CF的长为________
10、(4分)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为15人,频率为0.3,那么被调查的学生人数为________.
11、(4分)已知直线与平行且经过点,则的表达式是__________.
12、(4分)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M是BC边上一个动点,联结AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转恰好至△NGF.给出以下三个结论:①∠AND=∠MPC; ②△ABM≌△NGF;③S四边形AMFN=a1+b1.其中正确的结论是_____(请填写序号).
13、(4分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)为鼓励学生积极参加体育锻炼,某学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生所穿运动鞋的号码,绘制了如下的统计图①和图②(不完整).请根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的学生人数为 ,图①中m的值为 ;
(2)请补全条形统计图,并求本次调查样本数据的众数和中位数;
(3)根据样本数据,若学校计划购买400双运动鞋,建议购买35号运动鞋多少双?
15、(8分)我市某企业安排名工人生产甲、乙两种产品,每人每天生产件甲产品或件乙产品,根据市场需求和生产经验,甲产品每件可获利元,乙产品每件可获利元,而实际生产中,生产乙产品需要额外支出一定的费用,经过核算,每生产件乙产品,当天平均每件获利减少元,设每天安排人生产乙产品.
根据信息填表:
若每天生产甲产品可获得的利润比生产乙产品可获得的利润多元,试问:该企业每天生产甲、乙产品可获得总利润是多少元?
16、(8分)如图,在平面直角坐标系中,矩形的顶点、在坐标轴上,点的坐标为点从点出发,在折线段上以每秒3个单位长度向终点匀速运动,点从点出发,在折线段上以每秒4个单位长度向终点匀速运动.两点同时出发,当其中一个点到达终点时,另一个点也停止运动,连接.设两点的运动时间为,线段的长度的平方为,即(单位长度2).
(1)当点运动到点时,__________,当点运动到点时,__________;
(2)求关于的函数解析式,并直接写出自变量的取值范围.
17、(10分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示
(1)本次共抽查学生____人,并将条形图补充完整;
(2)捐款金额的众数是_____,平均数是_____;
(3)在八年级700名学生中,捐款20元及以上(含20元)的学生估计有多少人?
18、(10分)如图是一张长20cm、宽12cm的矩形纸板,将纸板四个角各剪去一个边长为cm的正方形,然后将四周突出部分折起,可制成一个无盖纸盒.
(1)这个无盖纸盒的长为 cm,宽为 cm;(用含x的式子表示)
(2)若要制成一个底面积是180m2的无盖长方体纸盒,求的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,等腰三角形中,,是底边上的高,则AD=________________.
20、(4分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠BAC=45°,则下列结论:①CD∥EF;②EF=DF;③DE平分∠CDF;④∠DEC=30°;⑤AB=CD;其中正确的是_____(填序号)
21、(4分)如果多项式是一个完全平方式,那么k的值为______.
22、(4分)若分式的值为零,则x的值为________.
23、(4分)化简______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,连接AF、BE交于点G,连接CE、DF交于点H.
(1)求证:四边形EGFH为平行四边形;
(2)当= 时,四边形EGFH为矩形.
25、(10分)如图,反比例函数的图象与一次函数的图象交于点,,点的横坐标实数4,点在反比例函数的图象上.
(1)求反比例函数的表达式;
(2)观察图象回答:当为何范围时,;
(3)求的面积.
26、(12分)如图1,在正方形ABCD中,E、F分别是BC、AB上一点,且AF=BE,AE与DF交于点G.
(1)求证:AE=DF.
(2)如图2,在DG上取一点M,使AG=MG,连接CM,取CM的中点P.写出线段PD与DG之间的数量关系,并说明理由.
(3)如图3,连接CG.若CG=BC,则AF:FB的值为 .
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据因式分解是把一个整式分解成几个整式乘积的形式由此即可解答.
【详解】
选项A,符合因式分解的定义,本选项正确;
选项B,结果不是整式的积的形式,不是因式分解,本选项错误;
选项C,结果不是整式的积的形式,不是因式分解,本选项错误;
选项D,结果不是整式的积的形式,因而不是因式分解,本选项错误.
故选A.
本题主要考查了因式分解的定义,正确理解因式分解的定义是解题关键.
2、B
【解析】
根据一元二次方程的定义和判别式的意义得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再求出两不等式的公共部分得到a≤ 且a≠6,然后找出此范围内的最大整数即可.
【详解】
根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0,
解得a≤ 且a≠6,
所以整数a的最大值为5.
故选B.
本题考查一元二次方程的定义和跟的判别式,一元二次方程的二次项系数不能为0;当一元二次方程有实数根时,△≥0.
3、C
【解析】
根据不等式的性质分析判断.
【详解】
A、在不等式的两边同时减去1,即a-1>b-1.故本选项错误;
B、在不等式的两边同时乘以1,即1a>1b.故本选项错误;
C、在不等式的两边同时乘以-1,不等号的方向发生改变,即-1a2.故本选项错误.
本题主要考查了不等式的基本性质.在解答不等式的问题时,应密切关注符号的方向问题.
4、B
【解析】
先将二次根式换成最简二次根式,再根据无限不循环小数是无理数的定义进行判断选择即可.
【详解】
因为,所以是无理数,共有3个,故答案选B.
本题考查的是无理数的定义,能够将二次根式化简是解题的关键.
5、B
【解析】
根据正方形和菱形的性质逐项分析可得解.
【详解】
根据正方形对角线的性质:平分、相等、垂直;菱形对角线的性质:平分、垂直,
故选B.
考点:1.菱形的性质;2.正方形的性质.
6、B
【解析】
根据平方根、算术平方根的求法,对二次根式进行化简即可.
【详解】
A.=2,此选项错误;
B.=2,此选项正确;
C. =﹣2,此选项错误;
D.=2,此选项错误;
故选:B.
本题考查了二次根式的化简和求值,是基础知识比较简单.
7、D
【解析】
满足的三个正整数,称为勾股数,由此判断即可.
【详解】
解:、,此选项是勾股数;
、,此选项是勾股数;
、,此选项是勾股数;
、,此选项不是勾股数.
故选:.
此题主要考查了勾股数,关键是掌握勾股数的定义.
8、A
【解析】
由△ACD∽△ADB,根据相似三角形的对应边成比例,可得AC:AD=AD:AB,又由AC=4,AD=2,即可求得AB的长.
【详解】
∵△ACD∽△ADB,
∴,
∴AB==1,
故选A.
考查相似三角形的性质,相似三角形对应边成比例.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
根据折叠的性质,在第二个图中得到DB=8-1=2,∠EAD=45°;在第三个图中,得到AB=AD-DB=1-2=4,△ABF为等腰直角三角形,然后根据等腰三角形的性质和矩形的性质得到BF=AB=4,再由CF=BC-BF即可求得答案.
【详解】
∵AB=8,AD=1,纸片折叠,使得AD边落在AB边上(第二个图),
∴DB=8-1=2,∠EAD=45°,
又∵△AED沿DE向右翻折,AE与BC的交点为F(第三个图),
∴AB=AD-DB=1-2=4,△ABF为等腰直角三角形,
∴BF=AB=4,
∴CF=BC-BF=1-4=2,
故答案为:2.
本题考查了翻折变换(折叠问题),矩形的性质,等腰三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.
10、50
【解析】
根据频数与频率的数量关系即可求出答案.
【详解】
解:设被调查的学生人数为x,
∴,
∴x=50,
经检验x=50是原方程的解,
故答案为:50
本题考查频数与频率,解题的关键是正确理解频数与频率的关系,本题属于基础题型.
11、
【解析】
先根据两直线平行的问题得到k=2,然后把(1,3)代入y=2x+b中求出b即可.
【详解】
∵直线y=kx+b与y=2x+1平行,
∴k=2,
把(1,3)代入y=2x+b得2+b=3,解得b=1,
∴y=kx+b的表达式是y=2x+1.
故答案为:y=2x+1.
此题考查一次函数中的直线位置关系,解题关键在于求k的值.
12、①②③.
【解析】
①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∴∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,可知∠DAM=∠AND,②根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM≌△NGF;③由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是正方形,于是得到S四边形AMFN=AM1=a1+b1;
【详解】
①∵四边形ABCD是正方形,
∴∠BAD=∠ADC=∠B=90°,
∴∠BAM+∠DAM=90°,
∵将△ABM绕点A旋转至△ADN,
∴∠NAD=∠BAM,∠AND=∠AMB,
∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,
∴∠DAM=∠AND,故①正确,
②∵将△MEF绕点F旋转至△NGF,
∴GN=ME,
∵AB=a,ME=a,
∴AB=ME=NG,
在△ABM与△NGF中,AB=NG=a,∠B=∠NGF=90°,GF=BM=b,
∴△ABM≌△NGF;故②正确;
③∵将△ABM绕点A旋转至△ADN,
∴AM=AN,
∵将△MEF绕点F旋转至△NGF,
∴NF=MF,
∵△ABM≌△NGF,
∴AM=NF,
∴四边形AMFN是矩形,
∵∠BAM=∠NAD,
∴∠BAM+DAM=∠NAD+∠DAN=90°,
∴∠NAM=90°,
∴四边形AMFN是正方形,
∵在Rt△ABM中,a1+b1=AM1,
∴S四边形AMFN=AM1=a1+b1;故③正确
故答案为①②③.
本题考查了全等三角形的判定和性质,正方形的性质,旋转的性质,正确的理解题意是解题的关键.
13、1 .
【解析】
试题分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出ED=BC=1.故答案为1.
考点: 三角形中位线定理.
三、解答题(本大题共5个小题,共48分)
14、 (1) 40,15;(2)见解析;(3)120双
【解析】
(1)根据统计图中的数据可以得到调查的总人数和m的值;
(2)根据(1)中的结果可以求得34号运动鞋的人数,从而可以将条形统计图补充完整,进而得到相应的众数和中位数;
(3)根据统计图中的数据可以解答本题.
【详解】
(1)12÷30%=40,
m%=×100%=15%,
故答案为:40,15;
(2)34号运动鞋为:40-12-10-8-4=6,
补全的条形统计图如图所示,
由条形统计图可得,本次调查样本数据的众数和中位数分别是:35号、36号;
(3)400×30%=120(双),
答:建议购买35号运动鞋120双.
考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
15、(1)2(65−x),120−2x;(2)该企业每天生产甲、乙产品可获得总利润是1元.
【解析】
(1)设每天安排x人生产乙产品,则每天安排(65−x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120−2x)元,每天可生产2(65−x)件甲产品,此问得解;
(2)由总利润=每件产品的利润×生产数量,结合每天生产甲产品可获得的利润比生产乙产品可获得的利润多650元,即可得出关于x的一元二次方程,解之取其较小值得到x值,然后再计算总利润即可.
【详解】
解:(1)设每天安排x人生产乙产品,则每天安排(65−x)人生产甲产品,每天可生产x件乙产品,每件的利润为(120−2x)元,每天可生产2(65−x)件甲产品.
填表如下:
(2)依题意,得:15×2(65−x)−(120−2x)•x=650,
整理得:x2−75x+650=0
解得:x1=10,x2=65(不合题意,舍去),
∴15×2(65−x)+(120−2x)•x=1.
答:该企业每天生产甲、乙产品可获得总利润是1元.
本题考查了一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,用含x的代数式表示出每天生产甲产品的数量及每件乙产品的利润;(2)找准等量关系,正确列出一元二次方程.
16、(1)1,;(2).
【解析】
(1)由点的坐标为可知OA=3,OB=4,故)当点运动到点时, ;
当点运动到点时,t= ;
(2)分析题意,d与t的函数关系应分为①当时,利用勾股定理在中,,,.计算即可得:.②当时,过点作,垂足为,利用勾股定理:在中,,,故而.即.③当时,利用勾股定理:在中,,,所以.即.
【详解】
解:(1)1,;
(2)①如图1,当时,
∵在中,,,
∴.
即.
②如图2,当时,
过点作,垂足为,
∵四边形为矩形,
∴.
∴四边形为矩形.
∴.
∴.
∴.
∴在中,,,
∴.
即.
③如图3,当时,
∵在中,,,
∴.
即.
综上所述,.
本题考查了动点问题与长度关系,灵活运用勾股定理进行解题是解题的关键.
17、 (1)50;补图见解析;(2)10,13.1;(3)154人.
【解析】
(1)有题意可知,捐款15元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;
(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将50人的捐款总额除以总人数可得平均数;
(3)由抽取的样本可知,用捐款20及以上的人数所占比例估计总体中的人数.
【详解】
(1)本次抽查的学生有:14÷28%=50(人),
则捐款10元的有50﹣9﹣14﹣7﹣4=16(人),补全条形统计图图形如下:
故答案为50;
(2)由条形图可知,捐款10元人数最多,故众数是10;
这组数据的平均数为: =13.1;
故答案为10,13.1.
(3)捐款20元及以上(含20元)的学生有:×700=154(人);
此题考查条形统计图;用样本估计总体;扇形统计图;加权平均数;众数,解题关键在于看懂图中数据
18、(1)(20﹣2x),(12﹣2x);(2)1
【解析】
(1)观察图形根据长宽的变化量用含x的代数式表示即可.
(2)根据(1)中代数式列出方程求解,去掉不合题意的取值.
【详解】
(1)长为(20﹣2x),宽为(12﹣2x)
(2)由题意(20﹣2x)(12﹣2x)=180
240-64x+4x2=180
4x2-64x+60=0
x2-16x+15=0
(x-15)(x-1)=0
解得x1=15(不合题意),x2=1
∴x的取值只能是1,即x=1.
结合图形观察长宽的变化量,根据一元二次方程求解即可.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
先根据等腰三角形的性质求出BD的长,再根据勾股定理解答即可.
【详解】
根据等腰三角形的三线合一可得:BD=BC=×6=3cm,在直角△ABD中,
由勾股定理得:AB2=BD2+AD2,
所以,AD=1cm.
故答案为1.
本题考查了等腰三角形的性质和勾股定理.关键要熟知等腰三角形的三线合一可得.
20、①②③⑤
【解析】
根据三角形中位线定理得到EF=AB,EF∥AB,根据直角三角形的性质得到DF=AC,根据三角形内角和定理、勾股定理计算即可判断.
【详解】
∵E,F分别是BC,AC的中点,
∴EF=AB,EF∥AB,
∵∠ADC=90°,∠CAD=45°,
∴∠ACD=45°,
∴∠BAC=∠ACD,
∴AB∥CD,
∴EF∥CD,故①正确;
∵∠ADC=90°,F是AC的中点,
∴DF=CF=AC,
∵AB=AC,EF=AB,
∴EF=DF,故②正确;
∵∠CAD=∠ACD=45°,点F是AC中点,
∴△ACD是等腰直角三角形,DF⊥AC,∠FDC=45°,
∴∠DFC=90°,
∵EF//AB,
∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°,
∴∠EFD=∠EFC+∠DFC=135°,
∴∠FED=∠FDE=22.5°,
∵∠FDC=45°,
∴∠CDE=∠FDC-∠FDE=22.5°,
∴∠FDE=∠CDE,
∴DE平分∠FDC,故③正确;
∵AB=AC,∠CAB=45°,
∴∠B=∠ACB=67.5°,
∴∠DEC=∠FEC﹣∠FED=45°,故④错误;
∵△ACD是等腰直角三角形,
∴AC2=2CD2,
∴AC=CD,
∵AB=AC,
∴AB=CD,故⑤正确;
故答案为:①②③⑤.
本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
21、8或-4
【解析】
根据完全平方公式的定义即可求解.
【详解】
=为完全平方公式,故=±6,
即得k=8或-4.
此题主要考查完全平方公式的形式,解题的关键是熟知完全平方公式.
22、1
【解析】
试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.
考点:分式的值为零的条件.
23、.
【解析】
约去分子与分母的公因式即可.
【详解】
.
故答案为:.
本题主要考查了分式的约分,主要是约去分式的分子与分母的公因式.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;
(2)当时,平行四边形EGFH是矩形,理由见解析.
【解析】
(1)可分别证明四边形AFCE是平行四边形,四边形BFDE是平行四边形,从而得出GF∥EH,GE∥FH,即可证明四边形EGFH是平行四边形.
(2)证出四边形ABFE是菱形,得出AF⊥BE,即∠EGF=90°,即可得出结论.
【详解】
证明:
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC.
∵点E. F分别是AD、BC的中点
∴AE=ED=AD,BF=FC=BC,
∴AE∥FC,AE=FC.
∴四边形AECF是平行四边形.
∴GF∥EH.
同理可证:ED∥BF且ED=BF.
∴四边形BFDE是平行四边形.
∴GE∥FH.
∴四边形EGFH是平行四边形.
(2)当时,平行四边形EGFH是矩形.理由如下:
连接EF,如图所示:
由(1)同理可证四边形ABFE是平行四边形,
当时,即BC=2AB,AB=BF,
∴四边形ABFE是菱形,
∴AF⊥BE,即∠EGF=90∘,
∴平行四边形EGFH是矩形.
全等三角形的判定与性质,平行四边形的判定与性质,矩形的判定.对于问题(1)利用两组对边分别平行的四边形是平行四边形证明四边形EGFH是平行四边形,在这个过程中可证明四边形AECF和四边形BFDE是平行四边形是平行四边形;对于问题(2)再(1)的基础上只需要证明有一个角是直角即可,这里借助菱形的对角线互相垂直平分,只需要证明四边形ABFE是菱形即可.
25、(1)反比例函数的表达式为y=;(2)x<﹣2或0<x<2时,y1>y2;(3)△PAB的面积为1.
【解析】
(1)利用一次函数求得B点坐标,然后用待定系数法求得反函数的表达式即可;
(2)观察图象可知,反函数的图象在一次函数图象上方的部分对应的自变量的取值范围就是不等式y1>y2的解;
(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,由点A与点B关于原点对称,得出OA=OB,则S△AOP=S△BOP,即S△PAB=2S△AOP,再求出点P的坐标,利用待定系数法求得直线AP的函数解析式,得到点C的坐标,然后根据S△AOP=S△AOC+S△POC,即可求得结果.
【详解】
(1)将x=2代入y2=得:y=1,
∴B(2,1),
∴k=xy=2×1=2,
∴反比例函数的表达式为y=;
(2)由正比例函数和反比例函数的对称性可知点A的横坐标为﹣2.
∵y1>y2,
∴反比例函数图象位于正比例函数图象上方,
∴x<﹣2或0<x<2;
(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,
设AP与y轴交于点C,如图,
∵点A与点B关于原点对称,
∴OA=OB,
∴S△AOP=S△BOP,
∴S△PAB=2S△AOP,
y1=中,当x=1时,y=2,
∴P(1,2),
设直线AP的函数关系式为y=mx+n,
把点A(﹣2,﹣1)、P(1,2)代入y=mx+n,
得,
解得m=3,n=1,
故直线AP的函数关系式为y=x+3,
则点C的坐标(0,3),OC=3,
∴S△AOP=S△AOC+S△POC
=OC•AR+OC•PS
=×3×2+×3×1
=,
∴S△PAB=2S△AOP=1.
26、 (1) 见解析;(2) DG=DP,理由见解析;(3) 1∶1.
【解析】
(1)用SAS证△ABE≌△DAF即可;
(2)DG=DP,连接GP并延长至点Q,使PQ=PG,连接CQ,DQ,先用SAS证△PMG≌△PCQ,得CQ=MG=AG,进一步证明∠DAG=∠DCQ,再用SAS证明△DAG≌△DCQ,得∠ADF=∠CDQ,于是有∠FDQ=90°,进而可得△DPG为等腰直角三角形,由此即得结论;
(3)延长AE、DC交于点H,由条件CG=BC可证CD=CG=CH,进一步用SAS证△ABE≌△HCE,得BE=CE,因为AF=BE,所以AF:BF=BE:CE=1:1.
【详解】
解:(1)证明:正方形ABCD中,
AB=AD,∠ABE=∠DAF=90°,BE=AF,
∴△ABE≌△DAF(SAS)
∴AE=DF;
(2)DG=DP,理由如下:
如图,连接GP并延长至点Q,使PQ=PG,连接CQ,DQ,
∵PM=PC,∠MPG=∠CPQ,
∴△PMG≌△PCQ(SAS),
∴CQ=MG=AG,∠PGM=∠PQC,
∴CQ∥DF,
∴∠DCQ=∠FDC=∠AFG,
∵∠AFG+∠BAE=90°,∠DAG+∠BAE=90°,
∴∠AFG=∠DAG.
∴∠DAG=∠DCQ.
又∵DA=DC,
∴△DAG≌△DCQ(SAS).
∴∠ADF=∠CDQ.
∵∠ADC=90°,
∴∠FDQ=90°.
∴△GDQ为等腰直角三角形
∵P为GQ的中点
∴△DPG为等腰直角三角形.
∴DG=DP.
(3)1∶1.
证明:延长AE、DC交于点H,
∵CG=BC,BC=CD,
∴CG=CD,∴∠1=∠2.
∵∠1+∠H=90°,∠2+∠3=90°,
∴∠3=∠H.
∴CG=CH.
∴CD=CG=CH.
∵AB=CD,∴AB=CH.
∵∠BAE=∠H,∠AEB=∠HEC,
∴△ABE≌△HCE(SAS).
∴BE=CE.
∵AF=BE,
∴AF:BF=BE:CE=1:1.
本题主要考查了正方形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质,其中第(1)小题是基础,第(2)(3)两小题探求结论的关键是添辅助线构造全等三角形,从解题过程看,熟练掌握正方形的性质和全等三角形的判定与性质是解题的关键.
题号
一
二
三
四
五
总分
得分
产品种类
每天工人数(人)
每天产量(件)
每件产品可获利润(元)
甲
乙
产品种类
每天工人数(人)
每天产量(件)
每件产品可获利润(元)
甲
2(65−x)
乙
120−2x
相关试卷
这是一份江苏省句容市华阳片区2025届九上数学开学质量跟踪监视试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省句容市华阳片区2024年九上数学开学质量跟踪监视试题【含答案】,共19页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。
这是一份江苏省句容市2024-2025学年数学九上开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。