江苏省句容市2024-2025学年数学九上开学达标检测模拟试题【含答案】
展开
这是一份江苏省句容市2024-2025学年数学九上开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式用图象表示大致为( )
A.B.C.D.
2、(4分)如图,四边形ABCD是矩形,连接BD,,延长BC到E使CE=BD,连接AE,则的度数为( )
A.B.C.D.
3、(4分)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:==11,==15:s甲2=s丁2=1.6,s乙2=s丙2=6.1.则麦苗又高又整齐的是( )
A.甲B.乙C.丙D.丁
4、(4分)在以下”绿色食品、响应环保、可回收物、节水“四个标志图案中,是中心对称图形的是( )
A.B.C.D.
5、(4分)P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是( )
A.y1>y2
B.y1<y2
C.当x1<x2时,y1>y2
D.当x1<x2时,y1<y2
6、(4分)正方形在平面直角坐标系中,其中三个顶点的坐标分别为,,,则第四个顶点的坐标为( )
A.B.C.D.
7、(4分)、、为三边,下列条件不能判断它是直角三角形的是( )
A.B.,,
C.D.,,(为正整数)
8、(4分)若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知点关于轴的对称点为,且在直线上,则____.
10、(4分)______.
11、(4分)不等式﹣2x>﹣4的正整数解为_____.
12、(4分)在x2+(________)+4=0的括号中添加一个关于的一次项,使方程有两个相等的实数根.
13、(4分)有一段斜坡,水平距离为120米,高50米,在这段斜坡上每隔6.5米种一棵树(两端各种一棵树),则从上到下共种____棵树.
三、解答题(本大题共5个小题,共48分)
14、(12分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V(m3)的反比例函数,且当V=0.8m3时,P=120kPa。
(1)求P与V之间的函数表达式;
(2)当气球内的气压大于100kPa时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于多少?
15、(8分)如图,是平行四边形,延长到,延长到,使,连接分别交、于点、,求证:
16、(8分)先化简,然后从,,,中选择一个合适的数作为的值代入求值
17、(10分)某校为了迎接体育中考,了解学生的体质情况,学校随机调查了本校九年级名学生“秒跳绳”的次数,并将调查所得的数据整理如下:
秒跳绳次数的频数、频率分布表
秒跳绳次数的频数分布直方图
、
根据以上信息,解答下列问题:
(1)表中, , ;
(2)请把频数分布直方图补充完整;
(3)若该校九年级共有名学生,请你估计“秒跳绳”的次数以上(含次)的学生有多少人?
18、(10分)如图,已知平面直角坐标系中,直线与x轴交于点A,与y轴交于B,与直线y=x交于点C.
(1)求A、B、C三点的坐标;
(2)求△AOC的面积;
(3)已知点P是x轴正半轴上的一点,若△COP是等腰三角形,直接写点P的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,正方形和正方形的边长分别为3和1,点、分别在边、上,为的中点,连接,则的长为_________.
20、(4分)若分式的值与1互为相反数,则x的值是__________.
21、(4分)若一元二次方程ax2﹣bx﹣2019=0有一个根为x=﹣1,则a+b=_____.
22、(4分)如图,,是反比例函数图像上的两点,过点作轴,过点作轴,交点为,连接,.若的面积为2,则的面积为______.
23、(4分)如图,在中,,,,把绕边上的点顺时针旋转90°得到,交于点,若,则的长是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.
(1)求P点的坐标.
(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.
(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.
25、(10分)已知矩形0ABC在平面直角坐标系内的位置如图所示,点0为坐标原点,点A的坐标为(10,0),点B的坐标为(10,8),点Q为线段AC上-点,其坐标为(5,n).
(1)求直线AC的表达式
(2)如图,若点P为坐标轴上-动点,动点P沿折线AO→0C的路径以每秒1个单位长度的速度运动,到达C处停止求Δ0PQ的面积S与点P的运动时间t(秒)的函数关系式.
(3)若点P为坐标平面内任意-.点,是否存在这样的点P,使以0,C,P,Q为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标,若不存在,请说明理由.
26、(12分)列方程解应用题
今年1月下旬以来,新冠肺炎疫情在全国范围内迅速蔓延,而比疫情蔓延速度更快的是口罩恐慌. 企业复工复产急需口罩,某大型国有企业向生产口罩的A、B两厂订购口罩,向A厂支付了1.32万元,向B厂支付了2.4万元,且在B厂订购的口罩数量是A长的2倍,B厂的口罩每只比A厂低0.2元. 求A、B两厂生产的口罩单价分别是多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由题意得函数关系式为,所以该函数为反比例函数.B、C选项为反比例函数的图象,再依据其自变量的取值范围为x>0确定选项为C.
2、A
【解析】
如图,连接AC.只要证明CE=CA,推出∠E=∠CAE,求出∠ACE即可解决问题.
【详解】
如图,连接AC.
∵四边形ABCD是矩形,∴AC=BD.
∵EC=BD,∴AC=CE,∴∠AEB=∠CAE,易证∠ACB=∠ADB=30°.
∵∠ACB=∠AEB+∠CAE,∴∠AEB=∠CAE=15°.
故选A.
本题考查了矩形的性质、等腰三角形的判定和性质,三角形的外角的性质等知识,解题的关键是学会添加常用辅助线,构造等腰三角形解决问题.
3、D
【解析】
方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪种小麦即可.
【详解】
∵=>=,
∴乙、丁的麦苗比甲、丙要高,
∵s甲2=s丁2<s乙2=s丙2,
∴甲、丁麦苗的长势比乙、丙的长势整齐,
综上,麦苗又高又整齐的是丁,
故选D.
本题主要考查了方差的意义和应用,要熟练掌握,解答此题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.
4、B
【解析】
根据中心对称图形的概念解答即可.
【详解】
选项A,是轴对称图形,不是中心对称图形;选项B,不是轴对称图形,是中心对称图形;选项C,不是轴对称图形,不是中心对称图形;选项D,不是轴对称图形,不是中心对称图形.
故选B.
本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形.
5、C
【解析】
试题分析:根据正比例函数图象的性质可知.
解:根据k<0,得y随x的增大而减小.
①当x1<x1时,y1>y1,
②当x1>x1时,y1<y1.
故选C.
考点:正比例函数的性质.
6、B
【解析】
根据已知三个点的横纵坐标特征,可设A(-2,2),B(-2,-2),C(x,y),D(2,2),判断出AB⊥x轴,AD⊥AB,由此可得C点坐标与D点、B点坐标的关系,从而得到C点坐标.
【详解】
解:设A(-2,2),B(-2,-2),C(x,y),D(2,2),
由于A点和B点的横坐标相同,
∴AB垂直x轴,且AB=1.
因为A点和D点纵坐标相同,
∴AD∥x轴,且AD=1.
∴AD⊥AB,CD⊥AD.
∴C点的横坐标与D点的横坐标相同为2.
C点纵坐标与B点纵坐标相同为-2,
所以C点坐标为(2,-2).
故选:B.
本题主要考查了正方形的性质、坐标与图形的性质,解决这类问题要熟知两个点的横坐标相同,则两点连线垂直于x轴,纵坐标相同,则平行于x轴(垂直于y轴).
7、C
【解析】
根据三角形内角和定理可得C是否是直角三角形;根据勾股定理逆定理可判断出A、B、D是否是直角三角形.
【详解】
解:A. 即,根据勾股定理逆定理可判断△ABC为直角三角形;
B. ,,,因为,即,,根据勾股定理逆定理可判断△ABC为直角三角形;
C. 根据三角形内角和定理可得最大的角,可判断△ABC为锐角三角形;
D. ,,(为正整数),因为,即,根据勾股定理逆定理可判断△ABC为直角三角形;
故选:C
本题考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.
8、B
【解析】
解:根据题意可得:
∴反比例函数处于二、四象限,则在每个象限内为增函数,
且当x<0时y>0,当x>0时,y<0,
∴<<.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据点P的坐标可求出点P′的坐标,再利用一次函数图象上点的坐标特征可得到关于k的一元一次方程,解之即可求出k值.
【详解】
解:∵点关于轴的对称点为
∴点P'的坐标为(1,-2)
∵点P'在直线上,
∴-2=k+3
解得:k=-5 ,
故答案为:-5.
本题考查了一次函数图象上点的坐标特征,关于x轴、y轴对称的点的坐标,掌握待定系数法求一次函数解析式是解题的关键.
10、1
【解析】
利用平方差公式即可计算.
【详解】
原式.
故答案为:1.
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.
11、x=1.
【解析】
将不等式两边同时除以-2,即可解题
【详解】
∵﹣2x>-4
∴x<2
∴正整数解为:x=1
故答案为x=1.
本题考查解不等式,掌握不等式的基本性质即可解题.
12、(只写一个即可)
【解析】
设方程为x2+kx+4=0,根据方程有两个相等的实数根可知∆=0,据此列式求解即可.
【详解】
设方程为x2+kx+4=0,由题意得
k2-16=0,
∴k=±4,
∴一次项为(只写一个即可).
故答案为:(只写一个即可).
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆
相关试卷
这是一份江苏省句容市崇明片2024-2025学年数学九上开学考试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省无锡市锡北片九上数学开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省泰兴市实验九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。