


2024-2025学年江苏省无锡市锡北片九上数学开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列分式中,最简分式是
A.B.C.D.
2、(4分)下列运算正确的是( )
A.B.C.D.
3、(4分)在下列汽车标志中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
4、(4分)直角三角形有两边的长分别是3、4,则剩下一边的长是( )
A.5B.C.2D.或5
5、(4分)下列图案中,不是中心对称图形的是( )
A.B.
C.D.
6、(4分)(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,
得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则 ( )
A.甲比乙的产量稳定B.乙比甲的产量稳定
C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定
7、(4分)矩形具有而平行四边形不一定具有的性质是( )
A.对边相等B.对角相等
C.对角线相等D.对角线互相平分
8、(4分)化简正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)观察下列按顺序排列的等式:,试猜想第n个等式(n为正整数):an=_____.
10、(4分)过边形的一个顶点共有2条对角线,则该边形的内角和是__度.
11、(4分)若矩形的边长分别为2和4,则它的对角线长是__.
12、(4分)不等式x+3>5的解集为_____.
13、(4分)如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的的长度为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动.
(1)问几秒后△PBQ的面积等于8cm2?
(2)是否存在这样的时刻,使=8cm2,试说明理由.
15、(8分)耒阳市某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):
请根据图中提供的信息,完成下列问题:
(1)在这次问卷调查中,喜欢“科普书籍”出现的频率为 ;
(2)补全条形图;
(3)求在扇形统计图中,喜欢“科普书籍”的所占的圆心角度数;
(4)如果全校共有学生1500名,请估计该校最喜欢“科普”书籍的学生约有多少人?
16、(8分)某书店积极响应政府“改革创新,奋发有为”的号召,举办“读书节“系列活动.活动中故事类图书的标价是典籍类图书标价的1.5倍,若顾客用540元购买图书,能单独购买故事类图书的数量恰好比单独购买典籍类图书的数量少10本.
(1)求活动中典籍类图书的标价;
(2)该店经理为鼓励广大读者购书,免费为购买故事类的读者赠送图1所示的精致矩形包书纸.在图1的包书纸示意图中,虚线是折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长为折叠进去的宽度.已知该包书纸的面积为875cm2(含阴影部分),且正好可以包好图2中的《中国故事》这本书,该书的长为21cm,宽为15cm,厚为1cm,请直接写出该包书纸包这本书时折叠进去的宽度.
17、(10分)如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE
(1)求∠DCE的度数;
(2)若AB=4,CD=3AD,求DE的长.
18、(10分)如图所示,□ABCD中,E、F分别是AB、CD上的点,AE=CF,M、N分别是DE、BF的中点.求证:四边形ENFM是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,则k=_______.
20、(4分)如图,在矩形ABCD中,AB=6,BC=4,将矩形沿AC折叠,点D落在处,则重叠部分△AFC的面积为___________
21、(4分)如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(-1,4).将△ABC沿y轴翻折到第一象限,则点C的对应点C′的坐标是_____.
22、(4分)如图,在中,,,,点为的中点,在边上取点,使.绕点旋转,得到(点、分别与点、对应),当时,则___________.
23、(4分)如果关于x的一元二次方程x2﹣6x+c=0(c是常数)没有实根,那么c的取值范围是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)(1)化简 :;
(2)先化简,再求值:;其中 a 2 ,b
25、(10分)先化简再求值,其中x=-1.
26、(12分)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如下表:
(1)若商场预计进货款为3500元,则这两种台灯各进多少盏.
(2)若设商场购进A型台灯m盏,销售完这批台灯所获利润为P,写出P与m之间的函数关系式.
(3)若商场规定B型灯的进货数量不超过A型灯数量的4倍,那么A型和B型台灯各进多少盏售完之后获得利润最多?此时利润是多少元.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
最简分式的标准是分子,分母中不含有公因式,不能再约分判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.
【详解】
A、,不符合题意;
B、,不符合题意;
C、是最简分式,符合题意;
D、,不符合题意;
故选C.
本题考查了最简分式的定义及求法一个分式的分子与分母没有公因式时,叫最简分式分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题在解题中一定要引起注意.
2、D
【解析】
根据合并同类项,积的乘方,完全平方公式,二次根式加减的运算法则逐一判断得出答案.
【详解】
解:A.7a与2b不是同类项,不能合并,故错误;
B.,故错误;
C.,故错误;
D.,故正确.
故选:D.
本题考查了整式的运算以及二次根式的加减,熟记法则并根据法则计算是解题关键.
3、A
【解析】
根据中心对称图形和轴对称图形的概念逐一进行分析即可.
【详解】
A、是中心对称图形,也是轴对称图形,故符合题意;
B、不是中心对称图形,是轴对称图形,故不符合题意;
C、不是中心对称图形,是轴对称图形,故不符合题意;
D、不是中心对称图形,是轴对称图形,故不符合题意,
故选A.
本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.
4、D
【解析】
分两种情况讨论,3,4都是直角边长,或者4为斜边长,利用勾股定理解出剩下一边的长即可.
【详解】
①若3,4都是直角边长,
则斜边=,
②若4为斜边长,
则剩下一条直角边=,
综上,剩下一边的长是或1.
故选D.
本题考查勾股定理,当无法确定直角边与斜边时,分类讨论是解题的关键.
5、D
【解析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;对于图A,分析可知,其绕着图形的圆心旋转180°后与原来的图形重合,故是中心对称图形,同理再分析其他选项即可.
【详解】
根据中心对称图形的概念可知,A、B、C都是中心对称图形,不符合题意;
D不是中心对称图形,符合题意.
故选:D.
本题考查了中心对称图形的判断,解题的关键是掌握中心对称图形定义;
6、A
【解析】
【分析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好.
【详解】因为s=0.002
故选A
【点睛】本题考核知识点:方差. 解题关键点:理解方差意义.
7、C
【解析】
根据矩形和平行四边形的性质进行解答即可.
【详解】
矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.
矩形的对角线相等,而平行四边形的对角线不一定相等.
故选C.
本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.
8、D
【解析】
【分析】先根据二次根式有意义的条件确定出x<0,然后再根据二次根式的性质进行化简即可得答案.
【详解】由题意可知x<0,
所以=,
故选D.
【点睛】本题考查了二次根式的性质与化简,熟知二次根式的被开方数是非负数、熟练掌握二次根式的性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
根据题意可知,
∴.
10、1
【解析】
n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条;多边形内角和定理:(n-2)•180 (n≥3)且n为整数).
【详解】
解:过n边形的一个顶点共有2条对角线,
则n=2+3=5,
该n边形的内角和是(5-2)×180°=1°,
故答案为:1.
本题考查了多边形内角和,熟记多边形内角和定理:(n-2)•180 (n≥3)且n为整数)是解题的关键.
11、2.
【解析】
根据矩形的性质得出∠ABC=90°,AC=BD,根据勾股定理求出AC即可.
【详解】
∵四边形ABCD是矩形,
∴∠ABC=90°,AC=BD,
在Rt△ABC中,AB=2,BC=4,由勾股定理得:AC=,
∴
故答案为:
本题考查了矩形的性质,勾股定理的应用,题目比较好,难度适中.
12、x>1.
【解析】
利用不等式的基本性质,把不等号左边的3移到右边,合并同类项即可求得原不等式的解集.
【详解】
移项得,x>5﹣3,
合并同类项得,x>1.
故答案为:x>1.
本题主要考查了一元一次不等式的解法,解不等式要依据不等式的基本性质.
13、2.1
【解析】
分析:根据矩形的性质可得AC=BD=10,BO=DO=BD=1,再根据三角形中位线定理可得PQ=DO=2.1.
详解:∵四边形ABCD是矩形,
∴AC=BD=10,BO=DO=BD,
∴OD=BD=1,
∵点P、Q是AO,AD的中点,
∴PQ是△AOD的中位线,
∴PQ=DO=2.1.
故答案为2.1.
点睛:此题主要考查了矩形的性质,以及三角形中位线定理,关键是掌握矩形对角线相等且互相平分.
三、解答题(本大题共5个小题,共48分)
14、(2)2秒或4秒;(2)不存在.
【解析】
试题分析:(2)表示出PB,QB的长,利用△PBQ的面积等于8cm2列式求值即可;
(2)设出发秒x时△DPQ的面积等于8平方厘米,由三角形的面积公式列出方程,再由根的判别式判断方程是否有解即可.
试题解析:解:(2)设x秒后△PBQ的面积等于8cm2.
则AP=x,QB=2x,∴PB=6﹣x,∴×(6﹣x)2x=8,解得,.
答:2秒或4秒后△PBQ的面积等于8cm2;
(2)设出发秒x时△DPQ的面积等于8cm2.∵S矩形ABCD﹣S△APD﹣S△BPQ﹣S△CDQ=S△DPQ,∴22×6﹣×22x﹣×2x(6﹣x)﹣×6×(22﹣2x)=8,化简整理得:,∵△=36﹣4×28=﹣76<0,∴原方程无解,∴不存在这样的时刻,使S△PDQ=8cm2.
考点:2.矩形的性质;2.勾股定理;3.动点型.
15、(1)0.25;(2)见解析;(3)90°;(4)375人
【解析】
(1)根据扇形图可知“科普书籍”出现的频率为1-其他的百分比-文艺的百分比-体育的百分比求解即可;
(2)选取其他、文艺或体育任意条形图数据结合扇形百分比求出全体人数,再根据(1)科普的频数即可确定人数,据此补全图形即可;
(3)根据喜欢“科普书籍”的所占圆心角度数=喜欢“科普书籍”的百分比×360°求解即可;
(4)根据该校最喜欢“科普”书籍的学生数=该校学生数×喜欢“科普”的百分比求解即可.
【详解】
解:(1)“科普书籍”出现的频率=1-20%-15%-40%=25%=0.25,故答案为0.25;
(2)调查的全体人数=人,
所以喜欢科普书籍的人数=人,如图;
(3)喜欢“科普书籍”的所占的圆心角度数=0.25×360°=90°
(4)该校最喜欢“科普”书籍的学生约有0.25×1500=375人.
本题考查的是统计相关知识,能够结合扇形图和条形图共解问题是解题的关键.
16、(1)典籍类图书的标价为1元;(2)折叠进去的宽度为2cm
【解析】
(1)设典籍类图书的标价为元,根据购买两种图书的数量差是10本,列出方程并解答;
(2)矩形面积=(2宽+1+2折叠进去的宽度)×(长+2折叠进去的宽度).
【详解】
(1)设典籍类图书的标价为元,
由题意,得﹣10=.
解得x=1.
经检验:x=1是原分式方程的解,且符合题意.
答:典籍类图书的标价为1元;
(2)设折叠进去的宽度为ycm,则(2y+15×2+1)(2y+21)=875,
化简得y2+26y﹣56=0,
∴y=2或﹣28(不合题意,舍去),
答:折叠进去的宽度为2cm.
考查了分式方程和一元二次方程的应用,(2)题结合了矩形面积的求法考查了图形的折叠问题,能够得到折叠进去的宽度和矩形纸的长、宽的关系,是解决问题的关键.
17、解:(1)90°;(2)2
【解析】
试题分析:(1)首先由等腰直角三角形的性质求得∠BAD、∠BCD的度数,然后由旋转的性质可求得∠BCE的度数,故此可求得∠DCE的度数;
(2)由(1)可知△DCE是直角三角形,先由勾股定理求得AC的长,然后依据比例关系可得到CE和DC的长,最后依据勾股定理求解即可.
试题解析:(1)∵△ABCD为等腰直角三角形,
∴∠BAD=∠BCD=45°.
由旋转的性质可知∠BAD=∠BCE=45°.
∴∠DCE=∠BCE+∠BCA=45°+45°=90°.
(2)∵BA=BC,∠ABC=90°,
∴AC=.
∵CD=3AD,
∴AD=,DC=3.
由旋转的性质可知:AD=EC=.
∴DE=.
考点:旋转的性质.
18、见解析
【解析】
整体分析:
用一组对边平行且相等的四边形是平行四边形证明四边形DEBF是平行四边形,结合条件得到EM=FN即可求证.
证明:∵四边形ABCD是平行四边形,
∴AB//CD.
∵AE=CF,
∴FD=EB,
∴四边形DEBF是平行四边形,
∴DE//FB,DE=FB.
∵M、N分别是DE、BF的中点,
∴EM=FN.
∵DE//FB,
∴四边形MENF是平行四边形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-5
【解析】
根据“点P(1,2)关于x轴的对称点为P′”求出点P′的坐标,再将其代入y=kx+3,即可求出答案.
【详解】
∵点P(1,2)关于x轴的对称点为P′
∴点P′坐标为(1,-2)
又∵点P′在直线y=kx+3上
∴-2=k+3
解得k=-5,
故答案为-5.
本题考查的是坐标对称的特点与一次函数的知识,能够求出点P′坐标是解题的关键.
20、
【解析】
因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,则AF=AB−BF.
【详解】
解:由于折叠可得:AD′=BC,∠D′=∠B,又∠AFD′=∠CFB,
∴△AFD′≌△CFB(AAS),
∴D′F=BF,
设D′F=x,则AF=6−x,
在Rt△AFD′中,(6−x)2=x2+42,
解之得:x=,
∴AF=AB−FB=6−=,
∴S△AFC=•AF•BC=.
故答案为:.
本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.
21、(3,1)
【解析】
关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.
【详解】
由题意得点C(-3,1)的对应点C′的坐标是(3,1).
考点:关于y轴对称的点的坐标
本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成.
22、2或4
【解析】
根据题意分两种情况,分别画出图形,证明△是等边三角形,根据直角三角形的性质求出OD,即可得到答案.
【详解】
若绕点D顺时针旋转△AED得到△,连接,
∵,,
∴∠A=30°,
∵,
∴AB=4,
∵点D是AB的中点,
∴AD=2,
∵,
∴AD==2,∠=60°,
∴△是等边三角形,
∴=,∠D=60°,且∠EAD=30°,
∴AE平分∠D,
∴AE是的垂直平分线,
∴OD=AD=,
∵AE=DE,
∴∠EAD=∠EDA=30°,
∴DE,
∴2;
若绕点D顺时针旋转△AED得到△,
同理可求=4,
故答案为:2或4.
此题考查旋转的性质,直角三角形30°角所对的直角边等于斜边一半的性质,等边三角形的判定及性质,三角函数.
23、c>1
【解析】
根据关于x的一元二次方程没有实数根时△<0,得出△=(-6)2-4c<0,再解不等式即可.
【详解】
∵关于x的一元二次方程x2-6x+c=0(c是常数)没有实根,
∴△=(-6)2-4c<0,
即36-4c<0,
解得:c>1.
故答案为c>1.
二、解答题(本大题共3个小题,共30分)
24、(1)﹣7a2b﹣6ab2﹣3c;(2),1.
【解析】
(1)先去括号,然后合并同类项即可得出答案.
(2)本题的关键根据去括号与合并同类项的法则将代数式化简,然后把给定的值代入求值.
【详解】
(1)原式=5a2b﹣10ab2+5c﹣8c﹣1a2b+4ab2=﹣7a2b﹣6ab2﹣3c;
(2)原式a﹣2ab2a+2b2=﹣3ab2
当a=﹣2,b时,原式=-3×(-2)6+6=1.
(1)本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.
(2)本题考查了整式的混合运算,主要考查了单项式与多项式相乘以及合并同类项的知识点.关键是去括号,去括号要特别注意符号的处理.
25、.
【解析】
原式
.
当时,原式
26、(1)应购进A型台灯75盏,B型台灯25盏;(2)P=﹣5m+2000;(3)商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.
【解析】
(1)设商场应购进A型台灯x盏,表示出B型台灯为(100-x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;
(2)根据题意列出方程即可;
(3)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.
【详解】
解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,
根据题意得,30x+50(100﹣x)=3500,
解得x=75,
所以,100﹣75=25,
答:应购进A型台灯75盏,B型台灯25盏;
(2)设商场销售完这批台灯可获利P元,
则P=(45﹣30)m+(70﹣50)(100﹣m),
=15m+2000﹣20m,
=﹣5m+2000,
即P=﹣5m+2000,
(3)∵B型台灯的进货数量不超过A型台灯数量的4倍,
∴100﹣m≤4m,
∴m≥20,
∵k=﹣5<0,P随m的增大而减小,
∴m=20时,P取得最大值,为﹣5×20+2000=1900(元)
答:商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.
本题考查了一次函数与一元一次方程的应用,解题的关键是熟练的掌握一次函数与一元一次方程的应用.
题号
一
二
三
四
五
总分
得分
批阅人
类型
价格
进价(元/盏)
售价(元/盏)
A型
30
45
B型
50
70
2024-2025学年江苏省无锡市长泾片数学九上开学联考模拟试题【含答案】: 这是一份2024-2025学年江苏省无锡市长泾片数学九上开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省无锡市锡中学实验学校九上数学开学统考模拟试题【含答案】: 这是一份2024-2025学年江苏省无锡市锡中学实验学校九上数学开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省无锡市青阳片数学九上开学预测试题【含答案】: 这是一份2024-2025学年江苏省无锡市青阳片数学九上开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。