终身会员
搜索
    上传资料 赚现金

    江苏省丹徒区世业实验学校2024年数学九年级第一学期开学学业水平测试试题【含答案】

    立即下载
    加入资料篮
    江苏省丹徒区世业实验学校2024年数学九年级第一学期开学学业水平测试试题【含答案】第1页
    江苏省丹徒区世业实验学校2024年数学九年级第一学期开学学业水平测试试题【含答案】第2页
    江苏省丹徒区世业实验学校2024年数学九年级第一学期开学学业水平测试试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省丹徒区世业实验学校2024年数学九年级第一学期开学学业水平测试试题【含答案】

    展开

    这是一份江苏省丹徒区世业实验学校2024年数学九年级第一学期开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,点P从点A出发,以每秒3cm的速度沿折线A-B-C-D方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动、已知动点P,Q同时出发,当点Q运动到点C时,点P,Q停止运动,设运动时间为t秒,在这个运动过程中,若△BPQ的面积为20cm2 , 则满足条件的t的值有( )
    A.1个B.2个C.3个D.4个
    2、(4分)做抛掷两枚硬币的实验,事件“一正一反”的“频率”的值正确的是( )
    A.0B.约为C.约为D.约为1
    3、(4分)已知直线y=mx+n(m,n为常数)经过点(0,﹣2)和(3,0),则关于x的方程mx+n=0的解为( )
    A.x=0B.x=1C.x=﹣2D.x=3
    4、(4分)在平面直角坐标系中,点P(﹣3,2)在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    5、(4分)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差(单位:千克)如下表所示:
    今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是( )
    A.甲B.乙C.丙D.丁
    6、(4分)一组数:3,5,4,2,3的中位数是( )
    A.2B.3C.3.5D.4
    7、(4分)正方形具有而菱形不具有的性质是( )
    A.对角线平分一组对角B.对角互补
    C.四边相等D.对边平行
    8、(4分)某市从不同学校随机抽取100名初中生对“使用数学教辅用书的册数”进行调查,统计结果如下:
    关于这组数据,下列说法正确的是( )
    A.众数是2册B.中位数是2册
    C.平均数是3册D.方差是1.5
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若一次函数的图象,随的增大而减小,则的取值范围是_____.
    10、(4分)如图,是根据四边形的不稳定性制作的边长均为的可活动菱形衣架,若墙上钉子间的距离,则=______度.
    11、(4分)如图,小明同学在东西方向的环海路A处,测得海中灯塔P在北偏东60°方向上,在A处向正东方向行了100米到达B处,测得海中灯塔P在北偏东30°方向上,则灯塔P到环海路的距离PC=_____米.
    12、(4分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:
    该公司规定:笔试、面试、体能成绩分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分,根据总分,从高到低确定三名应聘者的排名顺序,通过计算,乙的总分是82.5,根据规定,将被录用的是__________.
    13、(4分)如果最简二次根式与是同类二次根式,那么a=________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在开展“好书伴我成长”读书活动中,某中学为了解八年级名学生的读书情况,随机调查了八年级名学生读书的册数,统计数据如下表所示.
    (1)求这个数据的平均数、众数和中位数.
    (2)根据这组数据,估计该校八年级名学生在本次活动中读书多于册的人数.
    15、(8分)已知一次函数的图象如图所示,
    (1)求的值;
    (2)在同一坐标系内画出函数的图象;
    (3)利用(2)中你所面的图象,写出时,的取值范围.
    16、(8分)如图,在平面直角坐标系中,直线分别与轴、轴交于点,,且点的坐标为,点为的中点.
    (1)点的坐标是________,点的坐标是________;
    (2)直线上有一点,若,试求出点的坐标;
    (3)若点为直线上的一个动点,过点作轴的垂线,与直线交于点,设点的横坐标为,线段的长度为,求与的函数解析式.
    17、(10分)如图,在边长为1的小正方形网格中,△AOB的顶点均在格点上,
    (1)将△AOB向右平移4个单位长度得到△A1O1B1,请画出△A1O1B1;
    (2)以点A为对称中心,请画出△ AOB关于点A成中心对称的△ A O2 B2,并写点B2的坐标;
    (1)以原点O为旋转中心,请画出把△AOB按顺时针旋转90°的图形△A2 O B1.
    18、(10分)在一棵树的10米高处有两只猴子,其中一只猴子爬下树走到离树20米的池塘,另一只猴子爬到树顶后直接跃向池塘的处,如果两只猴子所经过距离相等,试问这棵树有多高.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知直线,则直线关于轴对称的直线函数关系式是__________.
    20、(4分)某高科技开发公司从2013年起开始投入技术改进资金,经过技术改进后,其产品的生产成本不断降低,具体数据如下表:请你认真分析表中数据,写出可以表示该变化规律的表达式是____________.
    21、(4分)如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是 cm.
    22、(4分)若 是整数,则整数x的值是_____.
    23、(4分)若﹣1的整数部分是a,小数部分是b,则代数式a2+2b的值是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,甲、乙两船同时从A港口出发,甲船以每小时30海里的速度向西偏北32°的方向航行2小时到达C岛,乙船以每小时40海里的速度航行2小时到B岛,已知B、C两岛相距100海里,求乙船航行的方向.
    25、(10分)已知,如图,在平面直角坐标系中,直线分别交轴、轴于点、两点,直线过原点且与直线相交于,点为轴上一动点.
    (1)求点的坐标;
    (2)求出的面积;
    (3)当的值最小时,求此时点的坐标;
    26、(12分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.
    (1)求反比例函数的解析式;
    (2)求一次函数的解析式;
    (3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    过A作AH⊥DC,由勾股定理求出DH的长.然后分三种情况进行讨论:即①当点P在线段AB上,②当点P在线段BC上,③当点P在线段CD上,根据三种情况点的位置,可以确定t的值.
    【详解】
    解:过A作AH⊥DC,∴AH=BC=2cm,DH= ==1.
    i)当P在AB上时,即时,如图,,解得:;
    ii)当P在BC上时,即<t≤1时,BP=3t-10,CQ=11-2t,,化简得:3t2-34t+100=0,△=-44<0,∴方程无实数解.
    iii)当P在线段CD上时,若点P在线段CD上,若点P在Q的右侧,即1≤t≤,则有PQ=34-5t,,<1(舍去);
    若点P在Q的左侧时,即,则有PQ=5t-34,;
    t=7.2.
    综上所述:满足条件的t存在,其值分别为,t2=7.2.
    故选B.
    本题是平行四边形中的动点问题,解决问题时,一定要变动为静,将其转化为常见的几何问题,再进行解答.
    2、C
    【解析】
    列举抛两枚硬币可能出现的情况,得出“一正一反”的概率,即为“频率”的估计值.
    【详解】
    抛两枚硬币可能出现的情况有:正正,正反,反正,反反四种等可能的情况,
    出现“一正一反”的概率为,
    则事件“一正一反”的“频率”的值约为,
    故选C.
    本题考查概率与频率,掌握大量重复同一实验时,事件A出现的频率与概率大致相等是解题的关键.
    3、D
    【解析】
    方程mx+n=0就是函数y=mx+n的函数值等于0,所以直线y=mx+n与x轴的交点的横坐标就是方程mx+n=0的解.
    【详解】
    解:∵直线y=mx+n(m,n为常数)经过点(1,0),
    ∴当y=0时,x=1,
    ∴关于x的方程mx+n=0的解为x=1.
    故选D.
    本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
    4、B
    【解析】
    根据各象限的点的坐标的符号特征判断即可.
    【详解】
    ∵-3<0,2>0,
    ∴点P(﹣3,2)在第二象限,
    故选:B.
    本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.
    5、B
    【解析】
    先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定.
    【详解】
    因为甲组、乙组的平均数丙组比丁组大,
    而乙组的方差比甲组的小,
    所以乙组的产量比较稳定,
    所以乙组的产量既高又稳定,
    故选B.
    本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.
    6、B
    【解析】
    按大小顺序排列这组数据,最中间那个数是中位数.
    【详解】
    解:从小到大排列此数据为:2,1,1,4,5,位置处于最中间的数是1,
    所以这组数据的中位数是1.
    故选:B.
    此题主要考查了中位数.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
    7、B
    【解析】
    要熟练掌握菱形对角线相互垂直平分与正方形对角线相互垂直平分相等的性质,根据各自性质进行比较即可解答.
    【详解】
    A. 正方形和菱形的对角线都可以平分一组对角,故本选项错误
    B. 只有正方形的对角互补,故本项正确
    C. 正方形和菱形的四边都相等,故本项错误
    D. 正方形和菱形的对边都平行,故本项错误
    故选B
    本题考查正方形和菱形的性质,熟练掌握其性质是解题关键.
    8、B
    【解析】
    根据方差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.
    【详解】
    解:A、众数是3册,结论错误,故A不符合题意;
    B、中位数是2册,结论正确,故B符合题意;
    C、平均数是(0×10+1×20+2×30+3×40)÷100=2册,结论错误,故C不符合题意;
    D、方差=×[10×(0-2)2+20×(1-2)2+30×(2-2)2+40×(3-2)2]=1,结论错误,故D不符合题意.
    故选:B.
    本题考查方差、平均数、中位数及众数,属于基础题,掌握各部分的定义及计算方法是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    利用函数的增减性可以判定其比例系数的符号,从而确定m的取值范围.
    【详解】
    解:∵一次函数y=(m-1)x+2,y随x的增大而减小,
    ∴m-1<0,
    ∵m<1,
    故答案为:m<1.
    本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0.
    10、1
    【解析】
    根据题意可得,AB和菱形的两边构成的三角形是等边三角形,可得∠A=60°,所以,∠1=1°
    【详解】
    解:如图,连接AB.
    ∵菱形的边长=25cm,AB=BC=25cm
    ∴△AOB是等边三角形
    ∴∠AOB=60°,
    ∴∠AOD=1°
    ∴∠1=1°.
    故答案为:1.
    本题主要考查菱形的性质及等边三角形的判定的运用.
    11、50
    【解析】
    在图中两个直角三角形中,先根据已知角的正切函数,分别求出AC和BC,根据它们之间的关系,构建方程解答.
    【详解】
    由已知得,在Rt△PBC中,∠PBC=60°,PC=BCtan60°=BC,
    在Rt△APC中,∠PAC=30°,AC=PC=3BC=100+BC,
    解得,BC=50,
    ∴PC=50(米),
    答:灯塔P到环海路的距离PC等于50米.
    故答案为:50
    此题考查的知识点是解直角三角形的应用,关键明确解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
    12、乙
    【解析】
    由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.
    【详解】
    ∵该公司规定:笔试、面试、体能成绩分别不得低于80分,80分,70分,
    ∴甲被淘汰,
    又∵丙的总分为80×60%+90×30%+73×10%=82.3(分),乙的总分是82.5,
    ∴根据规定,将被录取的是乙,
    故答案为:乙.
    本题考查了加权平均数的计算.解题的关键是熟练掌握加权平均数的定义.
    13、1
    【解析】
    根据同类二次根式可知,两个二次根式内的式子相等,从而得出a的值.
    【详解】
    ∵最简二次根式与是同类二次根式
    ∴1+a=4a-2
    解得:a=1
    故答案为:1.
    本题考查同类二次根式的应用,解题关键是得出1+a=4a-2.
    三、解答题(本大题共5个小题,共48分)
    14、(1)平均数为2;众数为3;中位数为2;(2)216人.
    【解析】
    (1)根据平均数、众数、中位数的概念求解;
    (2)根据样本数据,估计本次活动中读书多于2册的人数.
    【详解】
    解:(1)由题意得,平均数为:,
    读书册数为3的人数最多,即众数为3,
    第25人和第26人读数厕所的平均值为中位数,及中位数为:,
    (2)(人.
    答:估计七年级读书多于2册的有216人.
    本题考查了众数、中位数、平均数的知识,掌握各知识点的概念是解答本题的关键.
    15、(1);(2)详见解析;(3)
    【解析】
    (1)由图像可知A,B点的坐标,将点坐标代入一次函数表达式即可确定的值;(2)取直线与x轴,y轴的交点坐标,描点,连线即可;(3)时,的取值范围即直线在直线上方图像所对应的x的取值,由图像即可知.
    【详解】
    解:(1)由图像可知,,.
    将,两点代入中,
    得,解得.
    (2)对于函数,
    列表:
    图象如图:
    (3)由图象可得:当时,x的取值范围为:.
    本题考查了一次函数的综合应用,确定函数k,b值,画函数图像,根据图像写不等式解集,熟练掌握一次函数的相关知识是解题的关键.
    16、(1),;(2)或;(3).
    【解析】
    (1)将点A(8,0)代入可求得一次函数解析式,再令x=0即可得到B点坐标;因为C是A、B中点,利用中点坐标公式可求出C点坐标;
    (2)先求出△AOC的面积,则△NOA的面积为△AOC的面积的一半,设N点的坐标,可根据列出方程求解;
    (3)可先求出直线OC的函数解析式,把点P、Q坐标表示出来,分情况讨论即可得出答案.
    【详解】
    解:(1)将A(8,0)代入得:,解得:b=6;

    令x=0,得:y=6,∴点的坐标为
    ∵C为AB中点,
    ∴的坐标为
    故答案为:点的坐标为,的坐标为;
    (2)或
    由题可得S△AOC=

    ∴S△NOA=

    S△NOA=
    解得:n=6或n=10
    将n=6代入得;
    将n=10代入得;
    ∴或
    (3)依照题意画出图形,如图所示.
    解图1 解图2
    ∵.
    设直线的解析式为,
    则有,解得:,
    ∴直线的解析式为.
    ∵点在直线上,点在直线上,点的横坐标为,轴,
    ∴,
    当时,;
    当时,.
    故与的函数解析式为.
    本题考查待定系数法求函数解析式,坐标系中三角形面积的算法以及线段长度的算法,在计算的时注意分类讨论.
    17、(1)如图所示:△A1O1B1为所求作的三角形;见解析;(2)如图所示:为所求作的三角形,见解析;(-1,4);(1)如图所示:为所求作的三角形;见解析.
    【解析】
    (1)先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形;
    (2)关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分得特点,找到关键点的对应点,再顺次连接对应点即可得到平移后的图形;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,即可得到B点的坐标;
    (1)先将A,B,O以原点O为旋转中心, 顺时针旋转90°,得到对应点A2O, B1,最后顺次连接,顺次连接得出旋转后的图形.
    【详解】
    解:(1)如图所示:先将A,B,O三点向右平移4个单位长度,得到A1 ,O1, B1,最后顺次连接,即可得到:为所求作的三角形;
    (2)如图所示:先将A,B,O以点A为对称中心,得到A,O2, B2最后顺次连接,即可得到:为所求作的三角形,(-1,4);
    (1)如图所示:先将A,B,O以原点O为旋转中心, 顺时针旋转90°,得到A2,O, B1,最后顺次连接,即可得到:为所求作的三角形;
    本题主要考查了利用旋转变换,平移变换以及中心对称进行作图,解题时注意:关于x轴的对称点的横坐标不变,纵坐标互为相反数.关于y轴的对称点的横坐标互为相反数,纵坐标不变.
    18、树高为15m.
    【解析】
    设树高BC为xm,则可用x分别表示出AC,利用勾股定理可得到关于x的方程,可求得x的值.
    【详解】
    解:设树高BC为xm,则CD=x-10,
    则题意可知BD+AB=10+20=30,
    ∴AC=30-CD=30-(x-10)=40-x,
    ∵△ABC为直角三角形,
    ∴AC2=AB2+BC2,即(40-x)2=202+x2,
    解得x=15,即树高为15m,
    本题主要考查勾股定理的应用,用树的高度表示出AC,利用勾股定理得到方程是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    直接根据关于轴对称的点纵坐标不变横坐标互为相反数进行解答即可.
    【详解】
    解:关于轴对称的点纵坐标不变,横坐标互为相反数,
    直线与直线关于轴对称,则直线的解析式为.
    故答案为:.
    本题考查的是一次函数的图象与几何变换,熟知关于轴对称的点的坐标特点是解答此题的关键.
    20、y=
    【解析】
    有表格中数据分析可知xy=2.5×7.2=3×6=4×4.5=4.5×4=18,就可得到反比例函数关系,再设出反比例函数解析式,利用待定系数法求出即可.
    【详解】
    由题意可得此函数解析式为反比例函数解析式,设其为解析式为y=.
    当x=2.5时,y=7.2,
    可得7.2=,
    解得k=18
    ∴反比例函数是y=.
    此题主要考查反比例函数的应用,解题的关键是根据题意找出等量关系.
    21、.
    【解析】
    试题分析:点F与点C重合时,折痕EF最大,
    由翻折的性质得,BC=B′C=10cm,
    在Rt△B′DC中,B′D==8cm,
    ∴AB′=AD﹣B′D=10﹣8=2cm,
    设BE=x,则B′E=BE=x,
    AE=AB﹣BE=6﹣x,
    在Rt△AB′E中,AE2+AB′2=B′E2,
    即(6﹣x)2+22=x2,
    解得x=,
    在Rt△BEF中,EF=cm.
    故答案是.
    考点:翻折变换(折叠问题).
    22、2或1.
    【解析】
    根据二次根式的乘法法则计算得到,再根据条件确定整数x的值即可.
    【详解】
    解:∵
    是整数,
    ∴x=2或1,
    故答案为2或1.
    本题考查二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简,属于中考常考题型.
    23、1+2
    【解析】
    先估算出的范围,再求出a,b的值,代入即可.
    【详解】
    解:∵16<23<25,
    ∴1<<5,
    ∴3<﹣1<1.
    ∴a=3,b=﹣1.
    ∴原式=32+2(﹣1)=9+2﹣8=1+2.
    故答案为:1+2.
    本题考查的是估算无理数的大小,熟练掌握无理数的性质是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、乙船航行的方向是东偏北58°方向.
    【解析】
    首先计算出甲乙两船的路程,再根据勾股定理逆定理可证明∠BAC=90°,然后再根据C岛在A西偏北32°方向,可得B岛在A东偏北58°方向.
    【详解】
    解:由题意得:甲2小时的路程=30×2=60海里,乙2小时的路程=40×2=80海里,且BC=100海里,
    ∵AC2+AB2=602+802=10000,
    BC2=1002=10000,
    ∴AC2+AB2=BC2,
    ∴∠BAC=90°,
    ∵C岛在A西偏北32°方向,
    ∴B岛在A东偏北58°方向.
    ∴乙船航行的方向是东偏北58°方向.
    此题主要考查了勾股定理逆定理,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
    25、 (1)点;(2);(3)点.
    【解析】
    (1)联立两直线解析式组成方程组,解得即可得出结论;
    (2)将代入,求出OB的长,再利用 (1)中的结论点,即可求出的面积;
    (3)先确定出点A关于y轴的对称点A',即可求出PA+PC的最小值,再用待定系数法求出直线A'C的解析式即可得出点P坐标.
    【详解】
    解:(1)∵直线l1:y=x+3与直线l2:y=-3x相交于C,

    解得:
    ∴点;
    (2) ∵把代入,
    解得:,
    ∴,
    又∵点,


    (3) 如图,作点A(-3,0)关于y轴的对称点A'(3,0),
    连接CA'交y轴于点P,此时,PC+PA最小,
    最小值为CA'=,
    由(1)知,,
    ∵A'(3,0),
    ∴直线A'C的解析式为,
    ∴点.
    此题是一次函数综合题,主要考查了函数图象的交点坐标的求法,极值的确定,用分类讨论的思想和方程(组)解决问题是解本题的关键.
    26、(1);(2);(3)P(,0).
    【解析】
    (1)把A的坐标代入即可求出结果;
    (2)先把B的坐标代入得到B(4,1),把A和B的坐标,代入即可求得一次函数的解析式;
    (3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,求出直线AB′与x轴的交点即为P点的坐标.
    【详解】
    (1)把A(1,4)代入得:m=4,
    ∴反比例函数的解析式为:;
    (2)把B(4,n)代入得:n=1,∴B(4,1),把A(1,4),B(4,1)代入,得:,
    ∴,
    ∴一次函数的解析式为:;
    (3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,由作图知,B′(4,﹣1),
    ∴直线AB′的解析式为:,当y=0时,x=,
    ∴P(,0).
    题号





    总分
    得分




    24
    24
    23
    20
    2.1
    1.9
    2
    1.9
    册数
    0
    1
    2
    3
    人数
    10
    20
    30
    40
    笔试
    面试
    体能

    83
    79
    90

    85
    80
    75

    80
    90
    73
    册数
    人数
    x
    0
    1
    y
    ﹣2
    0

    相关试卷

    江苏省丹徒区世业实验学校2025届数学九上开学质量检测试题【含答案】:

    这是一份江苏省丹徒区世业实验学校2025届数学九上开学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省丹徒区实业实验学校六校联考2025届数学九年级第一学期开学学业水平测试试题【含答案】:

    这是一份江苏省丹徒区实业实验学校六校联考2025届数学九年级第一学期开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年江苏省丹徒区世业实验学校九上数学期末综合测试试题含答案:

    这是一份2023-2024学年江苏省丹徒区世业实验学校九上数学期末综合测试试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号, 见解析,B2,C2等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map