


湖南省长沙县2024-2025学年数学九上开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列函数中,表示y是x的正比例函数的是( )
A.y=﹣0.1xB.y=2x2C.y2=4xD.y=2x+1
2、(4分)若点P(2m-1,1)在第二象限,则m的取值范围是( )
A.mC.m≤ D.m≥
3、(4分)如图,是一张平行四边形纸片ABCD,要求利用所学知识作出一个菱形,甲、乙两位同学的作法分别如下:
对于甲、乙两人的作法,可判断( )
A.甲正确,乙错误B.甲错误,乙正确
C.甲、乙均正确D.甲、乙均错误
4、(4分)已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=-kx+k的图像大致是( )
A.B.C.D.
5、(4分)已知正比例函数y=kx,且y随x的增大而减少,则直线y=2x+k的图象是( )
A.B.C.D.
6、(4分)下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()
A.18cm2B.36cm2C.72cm2D.108cm2
7、(4分)点A(m+4,m)在平面直角坐标系的x轴上,则点A关于y轴对称点的坐标为( )
A.B.C.D.
8、(4分)如图,在△ABC中,AB=AC,∠BAC=58°,∠BAC的平分线与AB的中垂线交于点O,连接OC,则∠AOC的度数为( )
A.151°B.122°C.118°D.120°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,直线y1=x+1和直线y1=0.5x+1.5相交于点(1,3),则当x=_____时,y1=y1;当x______时,y1>y1.
10、(4分)已知某个正多边形的每个内角都是,这个正多边形的内角和为_____.
11、(4分)如图,在平面直角坐标系中,直线与直线相交于点,则关于的二元一次方程组的解是__________.
12、(4分)化简:_________.
13、(4分)已知Rt△ABC,∠ABC=90°,小明按如下步骤作图,①以A为圆心,BC长为半径作弧,以C为圆心,AB长为半径作弧,两弧相交于点D;②连接DA,DC,则四边形ABCD为___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在数学学习中,及时对知识进行归纳和整理是提高学习效率的重要方法,善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,对照图形,把相关知识归纳整理如下:
一次函数与方程(组)的关系:
(1)一次函数的解析式就是一个二元一次方程;
(2)点B的横坐标是方程kx+b=0的解;
(3)点C的坐标(x,y)中x,y的值是方程组①的解.
一次函数与不等式的关系:
(1)函数y=kx+b的函数值y大于0时,自变量x的取值范围就是不等式kx+b>0的解集;
(2)函数y=kx+b的函数值y小于0时,自变量x的取值范围就是不等式②的解集.
(一)请你根据以上归纳整理的内容在下面的数字序号后写出相应的结论:① ;② ;
(二)如果点B坐标为(2,0),C坐标为(1,3);
①直接写出kx+b≥k1x+b1的解集;
②求直线BC的函数解析式.
15、(8分)如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.
求证:(1)△BEG≌△DFH;
(2)四边形GEHF是平行四边形.
16、(8分)先化简:,再从中选取一个你认为合适的整数代入求值.
17、(10分)如图,在平面直角坐标系xOy中,矩形ABCD的边AD=3,A(,0),B(2,0),直线y=kx+b(k≠0)经过B,D两点.
(1)求直线y=kx+b(k≠0)的表达式;
(2)若直线y=kx+b(k≠0)与y轴交于点M,求△CBM的面积.
18、(10分)已知:如图,在中,的平分线交于点,的平分线交于点,交于点.
求证:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若方程有增根,则m的值为___________;
20、(4分)如图,中,,平分,点为的中点,连接,若的周长为24,则的长为______.
21、(4分)若二次根式有意义,则x的取值范围是________.
22、(4分)直角三角形中,两条直角边长分别为12和5,则斜边上的中线长是________.
23、(4分)关于的x方程=1的解是正数,则m的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知关于x的一次函数y=(3-m)x+m-5的图象经过第二、三、四象限,求实数m的取值范围.
25、(10分)小明骑单车上学,当他骑了一段路时起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:
(1)小明家到学校的路程是 米,本次上学途中,小明一共行驶了 米;
(2)小明在书店停留了 分钟,本次上学,小明一共用了 分钟;
(3)在整个上学的途中那个时间段小明骑车速度最快,最快的速度是多少?
26、(12分)如图,▱ABCD中,点E在BC延长线上,EC=BC,连接DE,AC,AC⊥AD于点A、
(1)求证:四边形ACED是矩形;
(2)连接BD,交AC于点F.若AC=2AD,猜想∠E与∠BDE的数量关系,并证明你的猜想.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
A选项:y=-0.1x,符合正比例函数的含义,故本选项正确.
B选项:y=2x2,自变量次数不为1,故本选项错误;
C选项:y2=4x,y不是x的函数,故本选项错误;
D选项:y=2x+1是一次函数,故本选项错误;
故选A.
2、A
【解析】
根据坐标与象限的关系,可列出不等式,解得m的取值范围.
【详解】
P点在第二象限,即2m-1<0,解得m<.
故答案为:A
考查了解一元一次不等式,以及点的坐标,弄清第二象限点坐标特征是解本题的关键.
3、C
【解析】
由甲乙的做法,根据菱形的判定方法可知正误.
【详解】
解:甲的作法如图所示,
四边形ABCD是平行四边形
又垂直平分AC
又
四边形AFCE为平行四边形
又
四边形AFCE为菱形
所以甲的作法正确.
乙的作法如图所示
AE平分
同理可得
又
四边形ABEF为平行四边形
四边形ABEF为菱形
所以乙的作法正确
故选:C
本题考查了菱形的判定,熟练运用菱形的判定进行证明是解题的关键.
4、D
【解析】
先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.
【详解】
∵正比例函数y=kx的函数值y随x的增大而增大,
∴k>0,
∵b=k>0,-k<0,
∴一次函数y=kx+k的图象经过一、二、四象限.
故选C.
考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象在一、二、四象限.
5、D
【解析】
∵正比例函数且随的增大而减少,
在直线中,
∴函数图象经过一、三、四象限.
故选D.
6、D
【解析】
根据正方形的面积公式,运用勾股定理可以证明:6个小正方形的面积和等于最大正方形面积的3倍.
【详解】
根据勾股定理得到:A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.
即A、B、C、D、E、F的面积之和为3个G的面积.
∵M的面积是61=36 cm1,
∴A、B、C、D、E、F的面积之和为36×3=108 cm1.
故选D.
考查了勾股定理,注意运用勾股定理和正方形的面积公式证明结论:6个小正方形的面积和等于最大正方形的面积的1倍.
7、A
【解析】
解:∵点A(m+4,m)在平角直角坐标系的x轴上,∴m=0,∴点A(4,0),∴点A关于y轴对称点的坐标为(-4,0).故选A.
8、B
【解析】
根据等腰三角形的性质得出AO垂直平分BC,根据线段垂直平分线性质得出AO=BO、OB=OC,利用等边对等角及角平分线性质,内角和定理求出所求即可.
【详解】
连接BO,延长AO交BC于E,
∵AB=AC,AO平分∠BAC,
∴AO⊥BC,AO平分BC,
∴OB=OC,
∵O在AB的垂直平分线上,
∴AO=BO,
∴AO=CO,
∴∠OAC=∠OCA=∠OAD=×58°=29°,
∴∠AOC=180°-2×29°=122°,
故选B.
此题考查了等腰三角形的性质,以及线段垂直平分线的性质,熟练掌握各自的性质是解本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
直线y1=x+1和直线y1=0.5x+1.5交点的横坐标的值即为y1=y1时x的取值;直线y1=x+1的图象落在直线y1=0.5x+1.5上方的部分对应的自变量的取值范围即为时x的取值.
【详解】
解:∵直线和直线相交于点,
∴当时,;
由图象可知:当时,.
故答案为:1;.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一次函数与一元一次方程的关系.
10、720°
【解析】
先求得这个多边形外角的度数,再求得多边形的边数,根据多边形的内角和公式即可求得这个多边形的边数.
【详解】
∵某个正多边形的每个内角都是,
∴这个正多边形的每个外角都是,
∴这个多边形的边数为:=6.
∴这个正多边形的内角和为:(6-2)×180°=720°.
故答案为:720°.
本题考查了多边形的内外角和,熟练运用多边形的内外角和公式是解决问题的关键.
11、
【解析】
关于x、y的二元一次方程组的解即为直线l1:y=mx-2与直线l2:y=x+n的交点P(1,2)的坐标.
【详解】
解:∵直线l1:y=mx-2与直线l2:y=x+n相交于点P(1,2),
∴关于x、y的二元一次方程组的解是.
故答案为.
本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.
12、
【解析】
分子分母同时约去公因式5xy即可.
【详解】
解:.
故答案为.
此题主要考查了分式的约分,关键是找出分子分母的公因式.
13、矩形
【解析】
直接利用小明的作图方法得出四边形ABCD是平行四边形,进而利用矩形的判定方法得出答案.
【详解】
解:根据小明的作图方法可知:AD=BC,AB=DC,∠B=90°,
∵AD=BC,AB=DC,
∴四边形ABCD是平行四边形,
∵∠B=90°,
∴平行四边形ABCD是矩形.
故答案为:矩形.
本题主要考查了复杂作图,正确掌握平行四边形的判定方法和矩形的判定方法是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(一);kx+b<1;(二)①x≤1;②y=-3x+2
【解析】
(一)①因为C点是两个函数图象的交点,因此C点坐标必为两函数解析式联立所得方程组的解;
②函数y=kx+b中,当y<1时,kx+b<1,因此x的取值范围是不等式kx+b<1的解集;
(二)①由图可知:在C点左侧时,直线y=kx+b的函数值要大于直线y=k1x+b1的函数值;
②利用待定系数法即可求出直线BC的函数解析式.
【详解】
解:(一)根据题意,可得①;②kx+b<1.
故答案为;kx+b<1;
(二)如果点B坐标为(2,1),C坐标为(1,3);
①kx+b≥k1x+b1的解集是x≤1;
②∵直线BC:y=kx+b过点B(2,1),C(1,3),
∴,解得,
∴直线BC的函数解析式为y=-3x+2.
此题考查了一次函数与二元一次方程组及一元一次不等式之间的联系,一次函数的性质,待定系数法求一次函数解析式,利用数形结合与方程思想是解答本题的关键.
15、 (1)证明见解析;(2)证明见解析.
【解析】
(1)利用平行四边形的性质得出BG=DH,进而利用SAS得出△BEG≌△DFH;
(2)利用全等三角形的性质得出∠GEF=∠HFB,进而得出答案.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥DC,
∴∠ABE=∠CDF,
∵AG=CH,
∴BG=DH,
在△BEG和△DFH中,
,
∴△BEG≌△DFH(SAS);
(2)∵△BEG≌△DFH(SAS),
∴∠BEG=∠DFH,EG=FH,
∴∠GEF=∠HFB,
∴GE∥FH,
∴四边形GEHF是平行四边形.
此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.
16、;当时,原式或当时,原式(任选其一即可).
【解析】
先根据分式的各个运算法则化简,然后从x的取值范围中选取一个使原分式有意义的值代入即可.
【详解】
解:原式
.
∵的整数有-4,-3,-2,-1,又根据分式的有意义的条件,,3和-1.
∴取-4或-2.
当时,原式.
当时,原式.
此题考查的是分式的化简求值题,掌握分式的各个运算法则和分式有意义的条件是解决此题的关键.
17、(1)y=-2x+4;(2)S△BCM=1.
【解析】
(1)利用矩形的性质,得出点D坐标,再利用待定系数法求得函数解析式;
(2)由三角形的面积公式,即可解答.
【详解】
(1)∵在矩形ABCD中,AD=1,A(,0),B(2,0),
∴D(,1),C(2,1).
把B(2,0),D(,1)代入y=kx+b(k≠0)得:,解得:,
∴直线表达式为:y=-2x+4;
(2)连接CM.
∵B(2,0),
∴OB=2.
∴S△BCM=∙BC∙OB=×1×2=1.
本题主要考查待定系数法求一次函数解析式以及矩形的性质,掌握待定系数法,是解题的关键.
18、证明见解析.
【解析】
根据平行四边形的性质可得:AB=CD,AD∥BC,根据平行线性质和角平分线性质求出∠ABE=∠AEB,推出AB=AE,同理求出DF=CD,即可证明AE=DF.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AD∥BC,
∴∠AEB=∠EBC,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE,
同理可得:DF=CD,
∴AE=DF,
即AF+EF=DE+EF,
∴AF=DE.
本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定等知识点的应用,能综合运用性质进行推理是解此题的关键,题目比较典型,难度适中.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-4或6
【解析】
方程两边同乘最简公分母(x-2)(x+2),化为整式方程,然后根据方程有增根,求得x的值,代入整式方程即可求得答案.
【详解】
方程两边同乘(x-2)(x+2),
得2(x+2)+mx=3(x-2)
∵原方程有增根,
∴最简公分母(x+2)(x-2)=0,
解得x=-2或2,
当x=-2时,m=6,
当x=2时,m=-4,
故答案为:-4或6.
本题考查了分式方程增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
20、18
【解析】
利用等腰三角形三线合一的性质可得BD=CD,又因E为AC中点,根据三角形的中位线定理及直角三角形斜边中线的性质可得CE=AC=7.5,DE=AB=7.5,再由△CDE的周长为24 ,求得CD=9,即可求得BC的长.
【详解】
∵AB=AC,AD平分∠BAC,
∴BD=CD,AD⊥BC,
∵E为AC中点,
∴CE=AC==7.5,DE=AB==7.5,
∵CD+DE+CE=24,
∴CD=24-7.5-7.5=9,
∴BC=18,
故答案为18 .
本题考查了等腰三角形的性质、三角形的中位线定理及直角三角形斜边的性质,求得CE=AC=7.5,DE=AB=7.5是解决问题的关键.
21、
【解析】
根据二次根式有意义的条件可得-x≥0,再解不等式即可.
解答
【详解】
由题意得:-x⩾0,
解得:,
故答案为:.
此题考查二次根式有意义的条件,解题关键在于掌握其定义.
22、6.5
【解析】
利用勾股定理求得直角三角形的斜边,然后利用直角三角形斜边上的中线等于斜边的一半解题.
【详解】
解:如图,在△ABC中,∠C=90°,AC=11,BC=5,
根据勾股定理知,
∵CD为斜边AB上的中线,
故答案为:6.5
本题考查了勾股定理、直角三角形斜边上的中线.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a1+b1=c1.即直角三角形,两直角边的平方和等于斜边的平方.直角三角形的性质:在直角三角形中斜边上的中线等于斜边的一半.
23、m>﹣5且m≠0
【解析】
先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围即可.
【详解】
去分母,得m=x-5,
即x=m+5,
∵方程的解是正数,
∴m+5>0,即m>-5,
又因为x-5≠0,
∴m≠0,
则m的取值范围是m>﹣5且m≠0,
故答案为:m>﹣5且m≠0.
本题考查了分式方程的解,熟练掌握分式方程的解法以及注意事项是解题的关键.这里要注意分母不等于0这个隐含条件.
二、解答题(本大题共3个小题,共30分)
24、3<m<1.
【解析】
根据一次函数的性质即可求出m的取值范围.
【详解】
∵一次函数的图象经过第二、三、四象限,
∴,
∴3<m<1.
本题考查一次函数,解题的关键是熟练运用一次函数的性质,本题属于基础题型.
25、 (1)1500,2700;(2)4,1;(3)在整个上学的途中 从12分钟到1分钟小明骑车速度最快,最快的速度是 450 米/分.
【解析】
(1)因为轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;共行驶的路程小明家到学校的距离折回书店的路程.
(2)与轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.
(3)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.
【详解】
解:(1)轴表示路程,起点是家,终点是学校,
小明家到学校的路程是1500米.
(米
即:本次上学途中,小明一共行驶了2700米.
(2)由图象可知:小明在书店停留了4分钟.本次上学,小明一共用了1分钟;
(3)折回之前的速度(米分),
折回书店时的速度(米分),
从书店到学校的速度(米分),
经过比较可知:小明在从书店到学校的时候速度最快,
即:在整个上学的途中从12分钟到1分钟小明骑车速度最快,最快的速度是450米分.
故答案是:(1)1500,2700;(2)4,1.
本题考查了函数的图象及其应用,解题的关键是理解函数图象中轴、轴表示的量及图象上点的坐标的意义.
26、(1)证明见解析(2)∠E=2∠BDE
【解析】
(1)由四边形ABCD是平行四边形,EC=BC,易证得四边形ACED是平行四边形,又由AC⊥AD,即可证得四边形ACED是矩形;
(2)根据矩形的性质得∠E=∠DAC=90°,可证得DA=AF,由等腰三角形的性质可得∠ADF=45°,则∠BDE=45°,可得出∠E=2∠BDE.
【详解】
(1)证明:因为ABCD是平行边形,
∴AD=BC,AD∥BC,
∵BC=CE,点E在BC的延长线上,
∴AD=EC,AD∥EC,
∴四边形ACED为平行四边形,
∵AC⊥AD,
∴平行四边形ACED为矩形
(2)∠E=2∠BDE
理由:∵平行四边形ABCD中,AC=2AF,
又∵AC=2AD,
∴AD=AF,
∴∠ADF=∠AFD,
∵AC∥ED,
∴∠BDE=∠BFC,
∵∠BFC=∠AFD,
∴∠BDE=∠ADF=45°,
∴∠E=2∠BDE
此题考查了矩形的判定与性质.熟悉矩形的判定和性质是关键.
题号
一
二
三
四
五
总分
得分
甲:连接AC,作AC的中垂线交AD、BC于E、F,则四边形AFCE是菱形.
乙:分别作与的平分线AE、BF,分别交BC于点E,交AD于点F,则四边形ABEF是菱形.
2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年陕西省扶风县数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年陕西省扶风县数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖州市吴兴区九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年湖州市吴兴区九上数学开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。