2023-2024学年湖南省长沙县九年级数学第一学期期末学业质量监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为 ( )
A.20°B.25°C.40°D.50°
2.函数y=mx2+2x+1的图像 与x轴只有1个公共点,则常数m的值是( )
A.1B.2C.0,1D.1,2
3.如图,点是矩形的边,上的点,过点作于点,交矩形的边于点,连接.若,,则的长的最小值为( )
A.B.C.D.
4.如图,已知二次函数()的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:
①当x>3时,y<0;
②3a+b<0;
③;
④;
其中正确的结论是( )
A.①③④B.①②③C.①②④D.①②③④
5.将二次函数化成顶点式,变形正确的是:( )
A.B.C.D.
6.一元二次方程的根是
A.B.C.,D.,
7.如图,直线y1=kx+b过点A(0,3),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是( ).
A.B.C.D.1<x<2
8.若点 A、B、C 都在二次函数的图象上,则的大小关系为( )
A.B.C.D.
9.下列四组、、的线段中,不能组成直角三角形的是( )
A.,,B.,,
C.,,D.,,
10.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,圆锥的底面半径OB=6cm,高OC=8cm,则该圆锥的侧面积是_____cm1.
12.二次函数的最大值是________.
13.在矩形中,点是边上的一个动点,连接,过点作与点,交射线于点,连接,则的最小值是_____________
14.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为_____.
15.如图,P是反比例函数y=的图象上的一点,过点P分别作x轴、y轴的垂线,得图中阴影部分的面积为3,则这个反比例函数的比例系数是_____.
16.如图,在Rt△ABC中,∠C=90°,AC=6,AD∥BC,DE与AB交于点F,已知AD=4,DF=2EF,sin∠DAB=,则线段DE=_____.
17.如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为_____.
18.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)的图象与AB相交于点D.与BC相交于点E,且BD=3,AD=6,△ODE的面积为15,若动点P在x轴上,则PD+PE的最小值是_____.
三、解答题(共66分)
19.(10分)如图,点D、E分别在的边AB、AC上,若,,.
求证:∽;
已知,AD::3,,求AC的长.
20.(6分)已知:如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于一、三象限内的A.B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,-2),tan∠BOC=.
(l)求该反比例函数和一次函数的解析式;
(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.
21.(6分)装潢公司要给边长为6米的正方形墙面ABCD进行装潢,设计图案如图所示(四周是四个全等的矩形,用材料甲进行装潢;中心区是正方形MNPQ,用材料乙进行装潢).
两种装潢材料的成本如下表:
设矩形的较短边AH的长为x米,装潢材料的总费用为y元.
(1)MQ的长为 米(用含x的代数式表示);
(2)求y关于x的函数解析式;
(3)当中心区的边长不小于2米时,预备资金1760元购买材料一定够用吗?请说明理由.
22.(8分)如图正方形ABCD中,E是BC边的中点,AE与BD相交于F点,△DEF的面积是1,求正方形ABCD的面积.
23.(8分)某商店经过市场调查,整理出某种商品在第()天的售价与销量的相关信息如下表.已知该商品的进价为每件30元,设销售该商品每天的利润为元.
(1)求与的函数关系是;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
24.(8分)如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.
(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.
25.(10分)已知抛物线与轴交于点.
(1)求点的坐标和该抛物线的顶点坐标;
(2)若该抛物线与轴交于两点,求的面积;
(3)将该抛物线先向左平移个单位长度,再向上平移个单位长度,求平移后的抛物线的解析式(直接写出结果即可).
26.(10分)如图,,点是线段的一个三等分点,以点为圆心,为半径的圆交于点,交于点,连接
(1)求证:是的切线;
(2)点为上的一动点,连接.
①当 时,四边形是菱形;
②当 时,四边形是矩形.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、A
4、B
5、A
6、B
7、C
8、D
9、B
10、B
二、填空题(每小题3分,共24分)
11、60π
12、1
13、
14、25
15、-1.
16、2
17、20
18、.
三、解答题(共66分)
19、(1)证明见解析;(2)
20、(1)反比例函数解析式为y=,一次函数解析式为y=x+3;(2)(﹣6,0).
21、(1)(6﹣1x);(1)y=﹣40x1+140x+2;(3)预备资金4元购买材料一定够用,理由见解析
22、1
23、(1);(2)销售该商品第45天时,当天销售利润最大,最大利润是6050元
24、(1)证明见解析;(2)BH=.
25、(1)(0,5);;(2)15;(3)
26、 (1)见解析;(2)①60°,②120°.
材料
甲
乙
价格(元/米2)
50
40
2023-2024学年湖南省澧县张公庙中学九年级数学第一学期期末学业质量监测模拟试题含答案: 这是一份2023-2024学年湖南省澧县张公庙中学九年级数学第一学期期末学业质量监测模拟试题含答案,共7页。
2023-2024学年湖南省衡阳耒阳市数学九年级第一学期期末学业质量监测模拟试题含答案: 这是一份2023-2024学年湖南省衡阳耒阳市数学九年级第一学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了下列事件中,是必然事件的是等内容,欢迎下载使用。
2023-2024学年湖南省部分地区九年级数学第一学期期末学业质量监测模拟试题含答案: 这是一份2023-2024学年湖南省部分地区九年级数学第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了下列图案中是中心对称图形的有,下列说法正确的是等内容,欢迎下载使用。