湖南省常德市2024年数学九上开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数y=6x+1的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
2、(4分)如图顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边的中点得到的图形是( )
A.等腰梯形B.直角梯形C.菱形D.矩形
3、(4分)在平行四边形ABCD中,已知,,则它的周长为( )
A.8B.10C.14D.16
4、(4分)一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为( )
A.B.C.D.
5、(4分)如图,以正方形的边为一边向内作等边,连结,则的度数为( )
A.B.C.D.
6、(4分)顺次连接对角线相等的四边形的各边中点,所形成的四边形是
A.平行四边形B.菱形C.矩形D.正方形
7、(4分)下列计算正确的是
A.B.
C.D.
8、(4分)设矩形的面积为S,相邻两边的长分别为a,b,已知S=2,b=,则a等于( )
A.2B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,一块矩形铁皮的长是宽的2倍,将这个铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,若盒子的容积是240cm3,则原铁皮的宽为______cm.
10、(4分)如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为 米.
11、(4分)如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.
12、(4分)直线y=3x+2沿y轴向下平移4个单位,则平移后直线与y轴的交点坐标为_______.
13、(4分)已知,如图△ABC∽△AED,AD=5cm,EC=3cm,AC=13cm,则AB=_____cm.
三、解答题(本大题共5个小题,共48分)
14、(12分)某经销商从市场得知如下信息:
他计划一次性购进这两种品牌计算器共100台(其中A品牌计算器不能超过50台),设该经销商购进A品牌计算器x台(x为整数),这两种品牌计算器全部销售完后获得利润为y元.
(1)求y与x之间的函数关系式;
(2)若要求A品牌计算器不得少于48台,求该经销商有哪几种进货方案?
(3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元?
15、(8分)某学校需要置换一批推拉式黑板,经了解,现有甲、乙两厂家报价均为100元/米1,且提供的售后服务完全相同,为了促销,甲厂家表示,每平方米都按七折计费;乙厂家表示,如果黑板总面积不超过10米1,每平方米都按九折计费,超过10米1,那么超出部分每平方米按六折计费.假设学校需要置换的黑板总面积为x米1.
(1)请分别写出甲、乙两厂家收取的总费用y(元)与x(米1)之间的函数关系式;
(1)请你结合函数图象的知识帮助学校在甲、乙两厂家中,选择一家收取总费用较少的.
16、(8分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低元.
(1)填表:(不需化简)
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
17、(10分)如图,在中,,,点在延长线上,点在上,且,延长交于点,连接、.
(1)求证:;
(2)若,则__________.
18、(10分)某校300名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.
回答下列问题:
(1)条形图中存在错误的类型是 ,人数应该为 人;
(2)写出这20名学生每人植树量的众数 棵,中位数 棵;
(3)估计这300名学生共植树 棵.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一元二次方程 的一次项系数为_________.
20、(4分)用反证法证明命题“在直角三角形中,至少有一个锐角不大于 45°”时第一步先假设所求证的结论不成立,即问题表述为______.
21、(4分)已知关于x的方程的解是负数,则n的取值范围为 .
22、(4分)已知▱ABCD的周长为40,如果AB:BC=2:3,那么AB=_____.
23、(4分)一次函数中,当时,<1;当时,>0则的取值范围是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知□ABCD边BC在x轴上,顶点A在y轴上,对角线AC所在的直线为y=+6,且AC=AB,若点P从点A出发以1cm/s的速度向终点O运动,同时点Q从点C出发以2cm/s的速度沿射线CB运动,当点P到达终点O时,点Q也随之停止运动.设点P的运动时间为t(s).
(1)直接写出顶点D的坐标(______,______),对角线的交点E的坐标(______,______);
(2)求对角线BD的长;
(3)是否存在t,使S△POQ=S▱ABCD,若存在,请求出的t值;不存在说明理由.
(4)在整个运动过程中,PQ的中点到原点O的最短距离是______cm,(直接写出答案)
25、(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.
26、(12分)某厂制作甲、乙两种环保包装盒.已知同样用6m的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料.
(1)求制作每个甲盒、乙盒各用多少材料?
(2)如果制作甲、乙两种包装盒3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度与甲盒数量之间的函数关系式,并求出最少需要多少米材料.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题分析:先判断出一次函数y=6x+1中k的符号,再根据一次函数的性质进行解答即可.
解:∵一次函数y=6x+1中k=6>0,b=1>0,
∴此函数经过一、二、三象限,
故选D.
2、D
【解析】
首先作出图形,根据三角形的中位线定理,可以得到,,,再根据等腰梯形的对角线相等,即可证得四边形EFGH的四边相等,即可证得是菱形,然后根据三角形中位线定理即可证得四边形OPMN的一组对边平行且相等,则是平行四边形,在根据菱形的对角线互相垂直,即可证得平行四边形的一组临边互相垂直,即可证得四边形OPMN是矩形.
【详解】
解:连接AC,BD.
∵E,F是AB,AD的中点,即EF是的中位线.
,
同理:,,.
又等腰梯形ABCD中,.
.
四边形EFGH是菱形.
是的中位线,
∴EF EG,,
同理,NMEG,
∴EFNM,
四边形OPMN是平行四边形.
,,
又菱形EFGH中,,
平行四边形OPMN是矩形.
故选:D.
本题考查了等腰梯形的性质,菱形的判定,矩形的判定,以及三角形的中位线定理,关键的应用三角形的中位线定理得到四边形EFGH和四边形OPMN的边的关系.
3、D
【解析】
根据“平行四边形的对边相等”结合已知条件进行分析解答即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD=5,AD=BC=3,
∴平行四边形ABCD的周长=AB+BC+CD+AD=5+3+5+3=16
故选D.
本题考查 “平行四边形的对边相等”是解答本题的关键.
4、C
【解析】
首先确定在阴影的面积在整个面积中占的比例,根据这个比例即可求出蚂蚁停在阴影部分的概率。
【详解】
∵正方形被等分成9份,其中阴影方格占4份,
∴当蚂蚁停下时,停在地板中阴影部分的概率为,
故选:C
此题考查概率公式,掌握运算法则是解题关键
5、C
【解析】
在正方形ABCD中,△ABE是等边三角形,可求出∠AEB、∠DAE的大小以及推断出AD=AE,从而可求出∠AED,再根据角的和差关系求出∠BED的度数.
【详解】
解:在正方形ABCD中,∠ABC=90°,AB=BC.
∵△ABE是等边三角形,
∴∠AEB=∠BAE=60°,AE=AB,
∴∠DAE=90°−60°=30°,AD=AE,
∴∠AED=∠ADE=(180°−30°)=75°,
∴∠BED=∠AEB+∠AED=60°+75°=135°.
故选:C.
本题考查了正方形的性质、等边三角形的性质.根据正方形和等边三角形的性质推知AD=AE是解题的关键.
6、B
【解析】
菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH为平行四边形,再由EH=EF,利用邻边相等的平行四边形是菱形即可得证.
【详解】
解:菱形,理由为:
如图所示,
∵E,F分别为AB,BC的中点,
∴EF为△ABC的中位线,
∴EF∥AC,EF=AC,
同理HG∥AC,HG=AC,
∴EF∥HG,且EF=HG,
∴四边形EFGH为平行四边形,
∵EH=BD,AC=BD,
∴EF=EH,则四边形EFGH为菱形,
故选B.
此题考查了中点四边形,平行四边形的判定,菱形的判定,熟练掌握三角形中位线定理是解本题的关键.
7、D
【解析】
根据二次根式的运算法则逐项计算即可判断.
【详解】
解:A、和不是同类二次根式,不能合并,故错误;
B、=2,故错误;
C、=,故错误;
D、==2,故正确.
故选D.
本题考查了二次根式的四则运算.
8、B
【解析】
利用矩形的边=面积÷邻边,列式计算即可.
【详解】
解:a=S÷b
=2÷
=,
故选:B.
此题考查二次根式的乘除法,掌握长方形面积计算公式是解决问题的根本.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
试题分析:设这块铁片的宽为xcm,则铁片的长为2xcm,由题意,得3(2x﹣6)(x﹣6)=240,解得x1=1,x2=﹣2(不合题意,舍去),答:这块铁片的宽为1cm.
故答案为1.
考点: 一元二次方程的应用.
10、1
【解析】
试题分析:直接利用坡角的定义以及结合直角三角中30°所对的边与斜边的关系得出答案.
解:由题意可得:AB=200m,∠A=30°,
则BC=AB=1(m).
故答案为:1.
11、y=x+2 1
【解析】
一次函数y=kx+b的图象经过A、B两点,即A(2,1),B(0,2),代入可求出函数关系式.再根据三角形的面积公式,得出△AOC的面积.
【详解】
解:一次函数y=kx+b的图象经过A、B两点,即A(2,1),B(0,2),
与x轴交于点C(-2,0),
根据一次函数解析式的特点,可得出方程组,解得
则此一次函数的解析式为y=x+2,
△AOC的面积=|-2|×1÷2=1.
则此一次函数的解析式为y=x+2,△AOC的面积为1.
故答案为:y=x+2;1.
本题考查的是待定系数法求一次函数的解析式,解答本题的关键是掌握点在函数解析式上,点的横纵坐标就适合这个函数解析式.
12、(0,-2)
【解析】
y=3x+2沿y轴向下平移4个单位y=3x+2-4=3x-2,
令x=0,y=-2, 所以(0,-2).
故交点坐标(0,-2).
13、1
【解析】
试题分析:有△ABC∽△AED,可以得到比例线段,再通过比例线段可求出AB的值.
解:∵△ABC∽△AED
∴
又∵AE=AC﹣EC=10
∴
∴AB=1.
考点:相似三角形的性质.
三、解答题(本大题共5个小题,共48分)
14、 (1)y=140x+1;(2)三种方案,见解析;(3)选择A50台、B50台的进货方案,经销商可获利最大,最大利润是13000元.
【解析】
(1)根据利润=售价-成本,总利润=单位利润×销售量,可以求出y与x之间的函数关系式;
(2)A品牌计算器不能超过50台,A品牌计算器不得少于48台,确定自变量的取值范围,再由自变量是整数,可得由几种方案;
(3)根据一次函数的增减性,和自变量的取值范围,确定何时利润最大,并求出最大利润.
【详解】
(1)y=(900-700)x+(160-100)(100-x)=140x+1,
答:y与x之间的函数关系式为:y=140x+1.
(2)由题意得:48≤x≤50
x为整数,因此x=48或x=49或x=50,
故有三种进货方案,即:①A48台、B52台;②A49台、B51台;③A50台、B50台;
(3)∵y=140x+1,k=140>0,
∴y随x的增大而增大,
∵又48≤x≤50的整数
∴当x=50时,y最大=140×50+1=13000元
答:选择A50台、B50台的进货方案,经销商可获利最大,最大利润是13000元.
考查一次函数的图象和性质、一元一次不等式组的解法以及不等式组的整数解等知识,联系实际、方案实际经常用到不等式的整数解,根据整数解的个数,确定方案数.
15、(1)甲厂家的总费用:y甲=140x;乙厂家的总费用:当0<x≤10时,y乙=180x,当x>10时,y乙=110x+1100;(1)详见解析.
【解析】
(1)根据题目中的数量关系即可得到甲、乙两厂家收取的总费用y(元)与x(米1)之间的函数关系式;
(1)分别画出甲、乙两厂家收取的总费用y(元)与x(米1)的函数图象,结合图象分析即可.
【详解】
解:(1)甲厂家的总费用:y甲=100×0.7x=140x;
乙厂家的总费用:当0<x≤10时,y乙=100×0.9x=180x,
当x>10时,y乙=100×0.9×10+100×0.6(x﹣10)
=110x+1100;
(1)甲、乙两厂家收取的总费用y(元)与x(米1)的函数图象如图所示:
若y甲=y乙,140x=110x+1100,x=60,
根据图象,当0<x<60时,选择甲厂家;
当x=60时,选择甲、乙厂家都一样;
当x>60时,选择乙厂家.
本题主要考查了一次函数在实际生活中的应用,涉及到的知识有运用待定系数法求函数的解析式,平面直角坐标系中交点坐标的求法,函数图象的画法等,从图表及图象中获取信息是解题的关键,属于中档题.
16、解:(1),,
(2)70元.
【解析】
(1)80-x,200+10x,800-200-(200+10x);
(2)根据题意,得
80×200+(80-x)(200+10x)+40[800-200-(200+10x)] -2×800=1.
整理,得x2-20x+100=0,解这个方程得x1= x2=10,
当x=10时,80-x=70>2.
答:第二个月的单价应是70元.
【详解】
请在此输入详解!
17、(1)见解析;(2)75°
【解析】
(1)证明Rt△ABE≌Rt△CBF,即可得到结论;
(2)由Rt△ABE≌Rt△CBF证得BE=BF,∠BEA=∠BFC,求出∠BFE=∠BEF=45°,B、E、G、F四点共圆,根据圆周角定理得到∠BGF=∠BEF=45°即可求出答案.
【详解】
(1)∵,
∴∠CBF=,
在Rt△ABE和Rt△CBF中,
,
∴Rt△ABE≌Rt△CBF,
∴BE=BF;
(2)∵BE=BF,∠CBF=90°,
∴∠BFE=∠BEF=45°,
∵Rt△ABE≌Rt△CBF,
∴∠BEA=∠BFC,
∵∠BEA+∠BAE=90°,
∴∠BFC+∠BAE=90°,
∴∠AGF=90°,
∵∠AEB+∠BEG=180°,
∴∠BEG+∠BFG=180°,
∵∠AGF+∠FBC=180°,
∴B、E、G、F四点共圆,
∵BE=BF,
∴∠BGF=∠BEF=45°,
∵∠GBF=60°,
∴∠GFB=180°-∠GBF-∠BGF=75°,
故答案为:75°.
此题考查全等三角形的判定与性质,等腰三角形的性质,四点共圆的判定,三角形的内角和定理,证明四点共圆是解此题的关键.
18、(1)D,2;(2)5, 5;(3)1.
【解析】
(1)利用总人数乘对应的百分比求解即可;
(2)根据众数、中位数的定义即可直接求解;
(3)首先求得调查的20人的平均数,乘以总人数300即可.
【详解】
(1)D错误,理由:20×10%=2≠3;
故答案为:D,2;
(2)由题意可知,植树5棵人数最多,故众数为5,
共有20人植树,其中位数是第10、11人植树数量的平均数,
即(5+5)=5,故中位数为5;
故答案为:5,5;
(3)(4×4+5×8+6×6+7×2)÷20=5.3,
∴300名学生共植树5.3×300=1(棵).
故答案为:1.
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0).其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项.
【详解】
解:一元二次方程 的一次项系数为-1.
故答案为:.
本题考查的知识点是一元二次方程的一般形式,是基础题目,易于理解掌握.
20、假设在直角三角形中,两个锐角都大于45°.
【解析】
反证法的第一步是假设命题的结论不成立,据此可以得出答案.
【详解】
∵反证法的第一步是假设命题的结论不成立,∴用反证法证明命题“在直角三角形中,至少有一个锐角不大于 45°”时第一步即为,假设在直角三角形中,两个锐角都大于45°.
此题主要考查了反证法的知识,解此题的关键是掌握反证法的意义和步骤. 反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)由矛盾说明假设错误,从而证明原命题正确.
21、n<1且
【解析】
分析:解方程得:x=n﹣1,
∵关于x的方程的解是负数,∴n﹣1<0,解得:n<1.
又∵原方程有意义的条件为:,∴,即.
∴n的取值范围为n<1且.
22、1.
【解析】
根据平行四边形的性质推出AB=CD,AD=BC,设AB=2a,BC=3a,代入得出方程2(2a+3a)=40,求出a的值即可.
【详解】
∵平行四边形ABCD的周长为40cm,AB:BC=2:3,
可以设AB=2a,BC=3a,
∴AB=CD,AD=BC,AB+BC+CD+AD=40,
∴2(2a+3a)=40,
解得:a=4,
∴AB=2a=1,
故答案为:1.
本题考查了平行四边形的性质和解一元一次方程等知识点的应用,关键是根据题意得出方程2(2a+3a)=40,用的数学思想是方程思想,题目比较典型,难度也适当.
23、.
【解析】
根据题意,得.
二、解答题(本大题共3个小题,共30分)
24、(1)16;6;4;3;(2)BD=6;(3)存在,t值为2;(4)此时PQ的中点到原点O的最短距离为.
【解析】
(1)令x=0,y=0代入解析式得出A,C坐标,进而利用平行四边形的性质解答即可;
(2)根据平行四边形的性质得出点B,D坐标,利用两点间距离解答即可;
(3)利用三角形的面积公式和平行四边形的面积公式列出方程解答即可;
(4)根据直角三角形斜边上中线等于斜边的一半可知,当PQ长度最短时,PQ的中点到原点O的距离最短解答即可.
【详解】
(1)把x=0代入y=+6,可得y=6,
即A的坐标为(0,6),
把y=0代入y=+6,可得:x=8,
即点C的坐标为(8,0),
根据平行四边形的性质可得:点B坐标为(-8,0),
所以AD=BC=16,
所以点D坐标为(16,6),
点E为对角线的交点,
故点E是AC的中点,
E的坐标为(4,3),
故答案为16;6;4;3;
(2)因为B(-8,0)和D(16,6),
∴BD=;
(3)设时间为t,可得:OP=6-t,OQ=8-2t,
∵S△POQ= S▱ABCD,
当0<t≤4时,,
解得:t1=2,t2=8(不合题意,舍去),
当4<t≤6时,,
△<0,不存在,
答:存在S△POQ=S▱ABCD,此时t值为2;
(4)∵,
当t=时,PQ=,
当PQ长度最短时,PQ的中点到原点O的距离最短,此时PQ的中点到原点O的最短距离为PQ==
此题是一次函数综合题,主要考查了平行四边形的性质,待定系数法,利用平行四边形的性质解答是解本题的关键.
25、(1)反比例函数为;一次函数解析式为y=﹣x﹣1;(2)x<﹣2或0<x<1.
【解析】
(1)由A的坐标易求反比例函数解析式,从而求B点坐标,进而求一次函数的解析式;
(2)观察图象,找出一次函数的图象在反比例函数的图象上方时,x的取值即可.
【详解】
解:(1)把A(﹣2,1)代入y=,
得m=﹣2,
即反比例函数为y=﹣,
将B(1,n)代入y=﹣,解得n=﹣2,
即B(1,﹣2),
把A(﹣2,1),B(1,﹣2)代入y=kx+b,得
解得k=﹣1,b=﹣1,
所以y=﹣x﹣1;
(2)由图象可知:当一次函数的值>反比例函数的值时,x<﹣2或0<x<1.
此题考查的是反比例函数和一次函数的综合题,掌握利用待定系数法求一次函数、反比例函数的解析式和根据图象求自变量的取值范围是解决此题的关键.
26、甲盒用1.6米材料;制作每个乙盒用1.5米材料;l=1.1n+1511,1711.
【解析】
首先设制作每个乙盒用米材料,则制作甲盒用(1+21%)米材料,根据乙的数量-甲的数量=2列出分式方程进行求解;根据题意得出n的取值范围,然后根据l与n的关系列出函数解析式,根据一次函数的增减性求出最小值.
【详解】
解:(1)设制作每个乙盒用米材料,则制作甲盒用(1+21%)米材料
由题可得: 解得x=1.5(米)
经检验x=1.5是原方程的解,所以制作甲盒用1.6米
答:制作每个甲盒用1.6米材料;制作每个乙盒用1.5米材料
(2)由题
∴
∵,∴l随n增大而增大,
∴当时,
考点:分式方程的应用,一次函数的性质.
题号
一
二
三
四
五
总分
得分
A品牌计算器
B品牌计算器
进价(元/台)
700
100
售价(元/台)
900
160
湖南省邵阳市新邵县2025届数学九上开学学业质量监测模拟试题【含答案】: 这是一份湖南省邵阳市新邵县2025届数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖南省娄底市冷水江市2025届九上数学开学学业质量监测模拟试题【含答案】: 这是一份湖南省娄底市冷水江市2025届九上数学开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届天津河北区数学九上开学学业质量监测模拟试题【含答案】: 这是一份2025届天津河北区数学九上开学学业质量监测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。