|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖南省娄底市新化县2024年九年级数学第一学期开学监测试题【含答案】
    立即下载
    加入资料篮
    湖南省娄底市新化县2024年九年级数学第一学期开学监测试题【含答案】01
    湖南省娄底市新化县2024年九年级数学第一学期开学监测试题【含答案】02
    湖南省娄底市新化县2024年九年级数学第一学期开学监测试题【含答案】03
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省娄底市新化县2024年九年级数学第一学期开学监测试题【含答案】

    展开
    这是一份湖南省娄底市新化县2024年九年级数学第一学期开学监测试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计 算剩下了 5 个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影 响这组数据的( )
    A.平均数B.中位数C.极差D.众数
    2、(4分)在平面直角坐标系中,点A、B、C、D是坐标轴上的点,,点,,点在如图所示的阴影部分内部(不包括边界),则a的取值范围是( )
    A.B.C.D.
    3、(4分)下列关于变量的关系,其中不是的函数的是( )
    A.
    B.
    C.
    D.
    4、(4分)如图,在平行四边形ABCD中,点E是CD边上一点,,连接AE、BE、BD,且AE、BD交于点F,若,则( )
    A.15.5B.16.5C.17.5D.18.5
    5、(4分)如图,在菱形ABCD中,∠BAD=60°,AB=2,E是DC边上一个动点,F是AB边上一点,∠AEF=30°.设DE=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图所示,则这条线段可能是图中的( ).
    A.线段ECB.线段AEC.线段EFD.线段BF
    6、(4分)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如下表所示:
    则这四人中成绩最稳定的是( )
    A.甲B.乙C.丙D.丁
    7、(4分)若,则下列变形错误的是( )
    A.B.C.D.
    8、(4分)某汽车制造厂为了使顾客了解一种新车的耗油量,公布了调查20辆该车每辆行驶100千米的耗油量,在这个问题中总体是( )
    A.所有该种新车的100千米耗油量B.20辆该种新车的100千米耗油量
    C.所有该种新车D.20辆汽车
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐次数,并给制成如图所示的频数分布直方图,请根据图中信息,计算仰卧起坐次数在次的频率是______
    10、(4分)与最简二次根式是同类二次根式,则a=__________.
    11、(4分)如图是一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,…,依此类推,若正方形①的边长为64cm,则正方形⑦的边长为 cm.
    12、(4分)如图,的对角线,交于点,点是的中点,若,则的长是______.
    13、(4分)如图,在宽为10m,长为30m的矩形地块上修建两条同样宽为1m的道路,余下部分作为耕地.根据图中数据计算,耕地的面积为 m1.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,平面直角坐标系中,直线AB:y=﹣x+b交x轴于点A(8,0),交y轴正半轴于点B.
    (1)求点B的坐标;
    (2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB上一点,过点P作y轴的平行线交直线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;
    (3)在(2)的条件下,M为CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标及PN的长度;若不存在,请说明理由.
    15、(8分)如图,已知点A在反比例函数(x>0)的图像上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图像经过点A,与y轴的正半轴交于点B.
    (1)求点A的坐标;
    (2)若四边形ABOC的面积是,求一次函数y=kx+b的表达式.
    16、(8分)如图1,在矩形ABCD中,AB=4,AD=5,E为射线BC上一点,DF⊥AE于F,连结DE.
    (1)当E在线段BC上时
    ①若DE=5,求BE的长;
    ②若CE=EF,求证:AD=AE;
    (2)连结BF,在点E的运动过程中:
    ①当△ABF是以AB为底的等腰三角形时,求BE的长;
    ②记△ADF的面积为S1,记△DCE的面积为S2,当BF∥DE时,请直接写出S1:S2的值.
    17、(10分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).
    (1)当﹣2<x≤3时,求y的取值范围;
    (2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.
    18、(10分)如图,E是平行四边形ABCD的边BA延长线上一点,AE=AB,连结AC、DE、CE.
    (1)求证:四边形ACDE为平行四边形.
    (2)若AB=AC,AD=4,CE=6,求四边形ACDE的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=_____.
    20、(4分)定义一种运算法则“”如下:,例如:,若,则的取值范围是____________.
    21、(4分)一只不透明的袋子中有1个白球、1个红球和2个黄球,这些球除颜色不同外其它都相同.搅均后从中任意摸出1个球,摸出白球可能性______摸出黄球可能性.(填“等于”或“小于”或“大于”).
    22、(4分)函数y=中,自变量x的取值范围是________.
    23、(4分)如图,矩形中,,延长交于点,延长交于点,过点作,交的延长线于点,,则=_________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平面直角坐标系中,O为坐标原点,直线l1:y=kx+4与y轴交于点A,与x轴交于点B.
    (1)请直接写出点A的坐标:______;
    (2)点P为线段AB上一点,且点P的横坐标为m,现将点P向左平移3个单位,再向下平移4个单位,得点P′在射线AB上.
    ①求k的值;
    ②若点M在y轴上,平面内有一点N,使四边形AMBN是菱形,请求出点N的坐标;
    ③将直线l1绕着点A顺时针旋转45°至直线l2,求直线l2的解析式.
    25、(10分)阅读材料,解决问题
    材料一:《孟子》中记载有一尺之棰,日取其半,万世不竭,其中蕴含了“有限”与“无限”的关系.如果我们要计算到第n天时,累积取走了多长的木棒?可以用下面两种方法去解决:
    方法一:第n天,留下了尺木棒,那么累积取走了尺木棒.
    方法二:第1天取走了尺木棒,第2天取走了尺木棒,……第n天取走了尺木棒,那么累积取走了:尺木棒.
    设:……①
    由①×得:……②
    ①-②得: 则:
    材料二:关于数学家高斯的故事,200多年前,高斯的算术老师提出了下面的问题:1+2+3+…+100=?据说当其他同学忙于把100个数逐项相加时,十岁的高斯却用下面的方法迅速算出了正确的答案:(1+100)+(2+99)+…+(50+51)=101×50=5050.
    也可以这样理解:令S=1+2+3+4+…+100 ①,则S=100+99+98+…+3+2+1②
    ①+②得:2S=(1+100)+(2+99)+(3+98)+…+(100+1)=100×(1+100)

    请用你学到的方法解决以下问题:
    (1)计算:;
    (2)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层的2倍,问塔的顶层共有多少盏灯?
    (3)某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动,某一周,这款软件的激活码为下面数学问题的答案:已知一列数1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,……其中第1项是,接下来的两项是,,再接下来的三项是,,,以此类推,求满足如下条件的正整数N:,且这一列数前N项和为2的正整数幂,请求出所有满足条件的软件激活码正整数N的值.
    26、(12分)如图,经过点的一次函数与正比例函数交于点.
    (1)求,,的值;
    (2)请直接写出不等式组的解集.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据平均数、中位数、极差及众数的意义分别判断后即可确定正确的选项.
    【详解】
    去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数,
    一定不会影响到中位数,
    故选B.
    此题考查统计量的选择,解题关键在于掌握各性质定义.
    2、D
    【解析】
    只要求出点B的横坐标以及直线AD与直线BC交点的横坐标值即可.
    【详解】
    解:在直角三角形AOB中,根据勾股定理得,

    设直线AD的解析式为 ,将代入得:
    ,解得,所以直线AD的解析式为
    同理由,两点坐标可得直线BC的解析式为
    联立得,解得 ,所以直线AD与直线BC交点坐标为.
    因为点B与直线AD与直线BC交点处于阴影部分的最边界,所以由题意可得.
    故选:D
    本题考查了平面直角坐标系及一次函数,灵活应用待定系数法求函数解析式是解题的关键.
    3、D
    【解析】
    根据函数的定义,设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而判断得出即可.
    【详解】
    解:选项ABC中,对于x的每一个确定的值,y都有唯一的值与其对应,故y是x的函数;
    只有选项D中,x取1个值,y有2个值与其对应,故y不是x的函数.
    故选D.
    此题主要考查了函数的定义,正确掌握函数定义是解题关键.
    4、C
    【解析】
    根据已知可得到相似三角形,从而可得到其相似比,根据相似三角形的面积比等于相似比的平方求出△ABF,再根据同高的三角形的面积之比等于底的比得出△BEF的面积,则= +即可求解.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴DE∥AB,
    ∴△DFE∽△BFA,
    ∵DE:EC=2:3,
    ∴DE:AB=2:5,DF:FB=2:5,
    ∵=2,根据相似三角形的面积比等于相似比的平方,
    ∴: =,即==12.5,
    ∵同高的三角形的面积之比等于底的比,△DEF和△BEF分别以DF、FB为底时高相同,
    ∴:= DF:FB=2:5,即==5,
    ∴= +=12.5+5=17.5,
    故选C.
    本题考查了相似三角形的性质,相似三角形的面积比等于相似比的平方,同高的三角形的面积之比等于底的比,解题的关键是掌握相似三角形的性质.
    5、B
    【解析】
    分析:求出当点E与点D重合时,即x=0时EC、AE、EF、BF的长可排除C、D;当点E与点C重合时,即x=2时,求出EC、AE的长可排除A,可得答案.
    详解:当点E与点D重合时,即x=0时,EC=DC=2,AE=AD=2,
    ∵∠A=60°,∠AEF=30°,
    ∴∠AFD=90°,
    在Rt△ADF中,∵AD=2,
    ∴AF=AD=1,EF=DF=ADcs∠ADF=,
    ∴BF=AB-AF=1,结合图象可知C、D错误;
    当点E与点C重合时,即x=2时,
    如图,连接BD交AC于H,
    此时EC=0,故A错误;
    ∵四边形ABCD是菱形,∠BAD=60°,
    ∴∠DAC=30°,
    ∴AE=2AH=2ADcs∠DAC=2×2×=2,故B正确.
    故选:B.
    点睛:本题主要考查动点问题的函数图象与菱形的性质、解直角三角形的应用,结合函数图象上特殊点的实际意义排除法求解是解此题的关键.
    6、D
    【解析】
    ∵0.036>0.035>0.028>0.015,
    ∴丁最稳定,故选D.
    7、D
    【解析】
    根据两内项之积等于两外项之积对各选项分析判断即可得解
    【详解】
    解:由得3a=2b,
    A. 由可得:3a=2b, 本选项正确;
    B. 由可得:3a=2b, 本选项正确;
    C. , 可知本选项正确;
    D. ,由前面可知本选项错误。
    故选:D
    本题考查了比例的性质,熟练掌握内项之积等于外项之积是解题的关键.
    8、A
    【解析】
    首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
    【详解】
    解:在这个问题中总体是:所有该种新车的100千米耗油量;
    样本是:20辆该种新车的100千米耗油量;
    样本容量为:20
    个体为:每辆该种新车的100千米耗油量;
    故选:A.
    本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、0.4
    【解析】
    根据计算仰卧起坐次数在次的频率.
    【详解】
    由图可知:仰卧起坐次数在次的频率.
    故答案为:.
    此题考查了频率、频数的关系:.
    10、1.
    【解析】
    先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.
    【详解】
    ∵与最简二次根式是同类二次根式,且=1,
    ∴a+1=3,解得:a=1.
    故答案为1.
    本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.
    11、8
    【解析】
    试题分析:根据图形以及等腰直角三角形的性质可得:正方形①的边长为64cm;正方形②的边长为32cm;正方形③的边长为32cm;正方形④的边长为16cm;正方形⑤的边长为16cm;正方形⑥的边长为8cm;正方形⑦的边长为8cm.
    考点:等腰直角三角形的性质
    12、3
    【解析】
    先说明OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.
    【详解】
    ∵▱ABCD的对角线AC、BD相交于点O,
    ∴OB=OD,AD=BC=6
    ∵点E是CD的中点,
    ∴CE=DE,
    ∴OE是△BCD的中位线,
    ∵AD=6,
    ∴OE=AD=3.
    故答案为:3
    此题考查平行四边形的性质,解题关键在于利用OE是△BCD的中位线
    13、2.
    【解析】
    试题分析:由图可得出两条路的宽度为:1m,长度分别为:10m,30m,这样可以求出小路的总面积,又知矩形的面积,耕地的面积=矩形的面积-小路的面积,由此计算耕地的面积.
    由图可以看出两条路的宽度为:1m,长度分别为:10m,30m,
    所以,可以得出路的总面积为:10×1+30×1-1×1=49m1,
    又知该矩形的面积为:10×30=600m1,
    所以,耕地的面积为:600-49=2m1.
    故答案为2.
    考点:矩形的性质.
    三、解答题(本大题共5个小题,共48分)
    14、 (1) B(0,6);(2) d=﹣t+10;(3)见解析.
    【解析】
    【分析】(1)把A(8,0)代入y=﹣x+b,可求解析式,再求B的坐标;(2)先求点C(0,﹣4),再求直线AC解析式,可设点P(t,﹣t+6),Q(t, t﹣4),所以d=(﹣t+6)﹣(t﹣4);过点M作MG⊥PQ于G,证△OAC≌△GMQ,得QG=OC=4,GM=OA=8;过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,得四边形GHRM是矩形,得HR=GM=8;设GH=RM=k,由△HNQ≌△RMN,得HN=RM=k,NR=QH=4+k,由HR=HN+NR,得k+4+k=8,可得GH=NH=RM=2,HQ=6,由Q(t,t﹣4),得N(t+2,t﹣4+6),代入y=﹣x+6,得t+2=﹣(t+2)+6,求出t=2,再求P(2,),N(4,3),可得PH=,NH=2,最后PN=.
    【详解】解:(1)∵y=﹣x+b交x轴于点A(8,0),
    ∴0=﹣×8+b,b=6,
    ∴直线AB解析式为y=﹣x+6,令x=0,y=6,B(0,6);
    (2)∵A(8,0),B(0,6),
    ∴OA=8,OB=6,
    ∵∠AOB=90°,
    ∴AB=10=BC,
    ∴OC=4,
    ∴点C(0,﹣4),设直线AC解析式为y=kx+b’,
    ∴,
    ∴,
    ∴直线AC解析式为y=x﹣4,
    ∵P在直线y=﹣x+6上,
    ∴可设点P(t,﹣t+6),
    ∵PQ∥y轴,且点Q在y=x﹣4 上,
    ∴Q(t, t﹣4),
    ∴d=(﹣t+6)﹣(t﹣4)=﹣t+10;
    (3)过点M作MG⊥PQ于G,
    ∴∠QGM=90°=∠COA,
    ∵PQ∥y轴,
    ∴∠OCA=∠GQM,
    ∵CQ=AM,
    ∴AC=QM,在△OAC与△GMQ中,

    ∴△OAC≌△GMQ,
    ∴QG=OC=4,GM=OA=8,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,
    ∴∠MGH=∠RHG=∠MRH=90°,
    ∴四边形GHRM是矩形,
    ∴HR=GM=8,可设GH=RM=k,
    ∵△MNQ是等腰直角三角形,
    ∴∠QMN=90°,NQ=NM,
    ∴∠HNQ+∠HQN=90°,
    ∴∠HNQ+∠RNM=90°,
    ∴∠RNM=∠HQN,
    ∴△HNQ≌△RMN,
    ∴HN=RM=k,NR=QH=4+k,
    ∵HR=HN+NR,
    ∴k+4+k=8,
    ∴k=2,
    ∴GH=NH=RM=2,
    ∴HQ=6,
    ∵Q(t,t﹣4),
    ∴N(t+2,t﹣4+6)即 N(t+2,t+2)
    ∵N在直线AB:y=﹣x+6上,
    ∴t+2=﹣(t+2)+6,
    ∴t=2,
    ∴P(2,),N(4,3),
    ∴PH=,NH=2,
    ∴PN=
    =.
    【点睛】本题考核知识点:一次函数综合应用.解题关键点:熟记一次函数性质,运用数形结合思想.
    15、(1);(2)y=+2
    【解析】
    (1)由AC=OC,设A(m,m)代入反比例函数得m2=9,求出A点坐标;
    (2)利用四边形ABOC的面积求出B点坐标,再用待定系数法确定函数关系式即可求出AB的解析式.
    【详解】
    (1)∵AC=OC
    ∴可设A(m,m)
    ∵点A(m,m)在y=的图像上
    ∴m2=9
    ∴m=±3
    ∵x>0
    ∴m=3
    (2)∵AC⊥x轴,OB⊥x轴
    ∴ S四边形ABOC==(3+OB)·3=
    ∴OB=2
    ∴B(0,2)
    ∵y=kx+b过点A(3,3),B(0,2)


    ∴一次函数的表达式为y=+2
    此题主要考查反比例函数钰一次函数综合,解题的关键是求出A点坐标.
    16、(1)①BE=2;②证明见解析;(2)①BE=2;②S1:S2=1
    【解析】
    【分析】(1)①在矩形 ABCD 中,∠B=∠DCE=90°,BC=AD=5,DC=AB=4,由勾股定理求得CE的长,即可求得BE的长;
    ②证明△CED≌△DEF,可得∠CED=∠FED,从而可得∠ADE=∠AED,即可得到AD=AE;
    (2)①分两种情况点 E 在线段 BC 上、点 E 在 BC 延长线上两种情况分别讨论即可得;
    ②S1:S2=1,当 BF//DE 时,延长 BF 交 AD 于 G,由已知可得到四边形 BEDG 是平行四边形,继而可得S△DEF=S平行四边形 BEDG,S △BEF+S△ DFG= S平行四边形 BEDG,S△ABG=S△CDE,根据面积的知差即可求得结论.
    【详解】(1)①在矩形 ABCD 中,∠B=∠DCE=90°,
    BC=AD=5,DC=AB=4,
    ∵DE=5,
    ∴CE==3,
    ∴BE=BC-CE=5-3=2;
    ②在矩形 ABCD 中,∠DCE=90°,AD//BC,
    ∴∠ADE=∠DEC,∠DCE=∠DFE,
    ∵CE=EF,DE=DE,
    ∴△CED≌△DEF(HL),
    ∴∠CED=∠FED,
    ∴∠ADE=∠AED,
    ∴AD=AE;
    (2)①当点 E 在线段 BC 上时,AF=BF,如图所示:
    ∴∠ABF=∠BAF,
    ∵∠ABF+∠EBF=90°,
    ∠BAF+∠BEF=90°,
    ∴∠EBF=∠BEF,
    ∴EF=BF ,∴AF=EF,
    ∵DF⊥AE,
    ∴DE=AD=5,
    在矩形 ABCD 中,CD=AB=4,∠DCE=90°,
    ∴CE=3,
    ∴BE=5-3=2;
    当点 E 在 BC 延长线上时,AF=BF,如图所示,
    同理可证 AF=EF,
    ∵DF⊥AE,
    ∴DE=AD=5,
    在矩形 ABCD 中,CD=AB=4,∠DCE=90°,
    ∴CE=3,
    ∴BE=5+3=8,
    综上所述,可知BE=2或8;
    ②S1:S2=1,解答参考如下:
    当 BF//DE 时,延长 BF 交 AD 于 G,
    在矩形 ABCD 中,AD//BC,AD=BC,AB=CD,
    ∠BAG=∠DCE=90°,
    ∵BF//DE,
    ∴四边形 BEDG 是平行四边形,
    ∴BE=DG,S△DEF=S平行四边形 BEDG,
    ∴AG=CE,S △BEF+S△ DFG= S平行四边形 BEDG,
    ∴△ABG≌△CDE,
    ∴S△ABG=S△CDE,
    ∵S △ABE= S平行四边形 BEDG,
    ∴S△ABE=S△BEF+S△DFG,
    ∴S△ABF=S△DFG,
    ∴S△ABF+S△AFG=S△DFG+S△AFG即 S△ABG=S△ADF,
    ∴S△CDE=S△ADF,即 S1:S2=1.
    【点睛】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理等,综合性较强,有一定的难度,熟练掌握和灵活用相关知识是解题的关键.
    17、 (1) ﹣4≤y<1;(2)点P的坐标为(2,﹣2) .
    【解析】
    利用待定系数法求一次函数解析式得出即可;
    (1)利用一次函数增减性得出即可.
    (2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.
    【详解】
    设解析式为:y=kx+b,
    将(1,0),(0,2)代入得:,
    解得:,
    ∴这个函数的解析式为:y=﹣2x+2;
    (1)把x=﹣2代入y=﹣2x+2得,y=1,
    把x=3代入y=﹣2x+2得,y=﹣4,
    ∴y的取值范围是﹣4≤y<1.
    (2)∵点P(m,n)在该函数的图象上,
    ∴n=﹣2m+2,
    ∵m﹣n=4,
    ∴m﹣(﹣2m+2)=4,
    解得m=2,n=﹣2,
    ∴点P的坐标为(2,﹣2).
    考点:1、待定系数法求一次函数的解析式,2、一次函数图象上点的坐标特征,3、一次函数的性质
    18、 (1)证明见解析;(2)12.
    【解析】
    (1)根据题意得到且,可得四边形ACDE为平行四边形;
    (2)先证四边形ACDE为菱形,然后根据菱形的面积公式计算即可.
    【详解】
    解:(1)在中,,.

    ∵,.
    四边形ACDE为平行四边形.
    (2)∵,,

    四边形ACDE为菱形.
    ∵,,

    本题考查了平行四边形和菱形的判定和性质,能够熟练应用基础知识进行推理是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、-3
    【解析】
    点P(m+2,2m+1)向右平移1个单位长度后 ,正好落在y轴上,则
    20、
    【解析】
    根据新定义列出不等式即可求解.
    【详解】
    依题意得-3x+5≤11
    解得
    故答案为:.
    此题主要考查列不等式,解题的关键是根据题意列出不等式进行求解.
    21、小于
    【解析】
    先分别求出摸出各种颜色球的概率,再进行比较即可得出答案.
    【详解】
    解:∵袋子中有1个白球、1个红球和2个黄球,共有4个球,
    ∴摸到白球的概率是,摸到红球的概率是,摸到黄球的概率是=,
    ∴摸出白球可能性<摸出黄球的可能性;
    故答案为小于.
    本题主要考查了可能性的大小,用到的知识点为:可能性等于所求情况数与总情况数之比.
    22、x≤1
    【解析】
    分析:根据二次根式有意义的条件解答即可.
    详解:
    ∵二次根式有意义,被开方数为非负数,
    ∴1 -x≥0,
    解得x≤1.
    故答案为x≤1.
    点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键.
    23、
    【解析】
    通过四边形ABCD是矩形以及,得到△FEM是等边三角形,根据含30°直角三角形的性质以及勾股定理得到KM,NK,KE的值,进而得到NE的值,再利用30°直角三角形的性质及勾股定理得到BN,BE即可.
    【详解】
    解:如图,设NE交AD于点K,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,∠ABC=90°,
    ∴∠MFE=∠FCB,∠FME=∠EBC
    ∵,
    ∴△BCE为等边三角形,
    ∴∠BEC=∠ECB=∠EBC=60°,
    ∵∠FEM=∠BEC,
    ∴∠FEM=∠MFE=∠FME=60°,
    ∴△FEM是等边三角形,FM=FE=EM=2,
    ∵EN⊥BE,
    ∴∠NEM=∠NEB=90°,
    ∴∠NKA=∠MKE=30°,
    ∴KM=2EM=4,NK=2AN=6,
    ∴在Rt△KME中,KE=,
    ∴NE=NK+KE=6+,
    ∵∠ABC=90°,
    ∴∠ABE=30°,
    ∴BN=2NE=12+,
    ∴BE=,
    ∴BC=BE=,
    故答案为:
    本题考查了矩形,等边三角形的性质,以及含30°直角三角形的性质与勾股定理的应用,解题的关键是灵活运用30°直角三角形的性质.
    二、解答题(本大题共3个小题,共30分)
    24、(1)(0,1);(2)①k=;②N(-3,);③直线 l2的解析式为y=x+1.
    【解析】
    (1)令,求出相应的y值,即可得到A的坐标;
    (2)①先设出P的坐标,然后通过点的平移规律得出平移后 的坐标,然后将代入 中即可求出k的值;
    ②作AB的中垂线与y轴交于M点,连结BM,分别作AM,BM的平行线,相交于点N,则四边形AMBN是菱形, 设M(0,t),然后利用勾股定理求出t的值,从而求出OM的长度,然后利用BN=AM求出BN的长度,即可得到N的坐标;
    ③先根据题意画出图形,过点B作BC⊥l1,交l2于点C,过点C作CD⊥x轴于D,利用等腰三角形的性质和AAS证明△AOB≌△BDC,得出AO=BD,OB=DC,进一步求出点C的坐标,然后利用待定系数法即可求出直线l2的解析式.
    【详解】
    (1)∵y=kx+1与y轴交于点A,
    令, ,
    ∴A(0,1).
    (2)①由题意得:P(m,km+1),
    ∵将点P向左平移3个单位,再向下平移1个单位,得点P′,
    ∴P′(m-3,km),
    ∵P′(m-3,km)在射线AB上,
    ∴k(m-3)+1=km,
    解得:k=.
    ②如图,作AB的中垂线与y轴交于M点,连结BM,过点B作AM的平行线,过点A作BM的平行线,两平行线相交于点N,则四边形AMBN是菱形.


    当 时,,解得 ,
    ∴ .
    设M(0,t),则AM=BM=1-t,
    在Rt△BOM中,OB2+OM2=BM2,
    即32+t2=(1-t)2,
    解得:t=,
    ∴M(0,),
    ∴OM=,BN=AM=1-=,
    ∴N(-3,).
    ③如图,过点B作BC⊥l1,交l2于点C,过点C作CD⊥x轴于D.则∠ABC=∠BDC=90°,

    ∵∠BAC=15°,
    ∴△ABC是等腰直角三角形,
    ∴AB=BC,∠ABO+∠CBD=90°,
    又∵∠ABO+∠BAO=90°,
    ∴∠BAO=∠CBD,
    在和中,
    ∴△AOB≌△BDC(AAS),
    ∴AO=BD=1,OB=DC=3,
    ∴OD=OB+BD=3+1=7,
    ∴C(-7,3),
    设直线 l2的解析式为:y=ax+1,
    则-7a+1=3,
    解得:a=.
    ∴直线 l2的解析式为:y=x+1.
    本题主要考查全等三角形的判定及性质,菱形的性质,勾股定理,一次函数与几何综合,解题的关键在于合理的添加辅助线,构造出全等三角形.
    25、(1);(2)塔的顶层共有3盏灯;(3)18或95
    【解析】
    (1)根据材料的方法可设S=1+3+9+27+…+3n.则3S=3(1+3+9+27+…+3n),利用即可解答.
    (2)设塔的顶层由x盏灯,根据一座7层塔共挂了381盏灯,可列方程.根据材料的结论即可解答.
    (3)由题意求得数列的分n+1组,及前n组和S=2n+1-2-n,及项数为,由题意可知:2n+1为2的整数幂.只需最后一组将-2-n消去即可,求出n值即可求得N的值
    【详解】
    解:(1)设S=1+3+9+27+…+3n,则3S=3(1+3+9+27+…+3n)=3+9+27+…+3n+3n+1,
    ∴3S-S=(3+9+27+…+3n+3n+1)-(1+3+9+27+…+3n),
    ∴2S=3n+1-1,
    (2)设塔的顶层由x盏灯,依题意得:
    x+21x+22x+23x+24x+25x+26x=381
    解得:x=3,
    答:塔的顶层共有3盏灯.
    (3)由题意这列数分n+1组:前n组含有的项数分别为:1,2,3,…,n,最后一组x项,根据材料可知每组和公式,求得前n组每组的和分别为:21-1,22-1,23-1,…,2n-1,
    总前n组共有项数为N=1+2+3+…+n=
    前n所有项数的和为Sn=21-1+22-1+23-1+…+2n-1=(21+22+23+…+2n)-n=2n+1-2-n,
    由题意可知:2n+1为2的整数幂.只需最后一组x项将-2-n消去即可,
    则①1+2+(-2-n)=0,解得:n=1,总项数为,不满足10<N<100,
    ②1+2+4+(-2-n)=0,解得:n=5,总项数为,满足10<N<100,
    ③1+2+4+8+(-2-n)=0,解得:n=13,总项数为,满足10<N<100,
    ④1+2+4+8+16+(-2-n)=0,解得:n=29,总项数为,不满足10<N<100,
    ∴所有满足条件的软件激活码正整数N的值为:18或95。
    本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.
    26、(1),,;(2)
    【解析】
    (1)将点(3,0)和点P的坐标代入一次函数的解析式求得m、b的值,然后将点P的坐标代入正比例函数解析式即可求得a的值;
    (2)直接根据函数的图象结合点P的坐标确定不等式的解集即可.
    【详解】
    (1)∵正比例函数与过点的一次函数交于点.







    (2)直接根据函数的图象,可得不等式的解集为:
    本题考查了求一次函数解析式,一次函数与一元一次不等式的问题,解题的关键是能够确定有关待定系数的值,难度不大.
    题号





    总分
    得分
    选手




    方差
    0.035
    0.036
    0.028
    0.015
    相关试卷

    湖南省娄底市涟源市2024年数学九年级第一学期开学监测试题【含答案】: 这是一份湖南省娄底市涟源市2024年数学九年级第一学期开学监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年湖南省娄底市新化县九年级数学第一学期期末质量跟踪监视试题含答案: 这是一份2023-2024学年湖南省娄底市新化县九年级数学第一学期期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列实数中,介于与之间的是,方程x2-x-1=0的根是等内容,欢迎下载使用。

    2023年湖南省娄底市新化县中考二模数学试题(含答案): 这是一份2023年湖南省娄底市新化县中考二模数学试题(含答案),共13页。试卷主要包含了选择题,填空题,解答题,综合探究题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map