|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖北省孝感孝昌县联考2024年九上数学开学考试模拟试题【含答案】
    立即下载
    加入资料篮
    湖北省孝感孝昌县联考2024年九上数学开学考试模拟试题【含答案】01
    湖北省孝感孝昌县联考2024年九上数学开学考试模拟试题【含答案】02
    湖北省孝感孝昌县联考2024年九上数学开学考试模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省孝感孝昌县联考2024年九上数学开学考试模拟试题【含答案】

    展开
    这是一份湖北省孝感孝昌县联考2024年九上数学开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列运算正确的是( )
    A.=B.=a+1C.+=0D.﹣=
    2、(4分)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为( )
    A.24B.18C.12D.9
    3、(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=6,H是AF的中点,那么CH的长是( )
    A.2.5B.2C.D.4
    4、(4分)如图,在平行四边形ABCD中,对角线AC、BD交于点O,E是CD的中点,若OE=2,则AD的长为( )
    A.2B.3
    C.4D.5
    5、(4分)直角三角形的边长分别为a,b,c,若a2=9,b2=16,那么c2的值是( )
    A.5B.7C.25D.25或7
    6、(4分)如图,四边形ABCD是正方形,点E、F分别在AD、CD上,AF、BE相交于点G,且AF=BE,则下列结论不正确的是:( )
    A.AF⊥BEB.BG=GFC.AE=DFD.∠EBC=∠AFD
    7、(4分)下列四个多项式中,不能因式分解的是( )
    A.a2+aB.C.D.
    8、(4分)下列各点在反比例函数图象上的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在中,,,,则__________.
    10、(4分)如图,在△ABC中,AB=3cm,BC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于_______cm.
    11、(4分)如图,已知点A(1,a)与点B(b,1)在反比例函数y=(x>0)图象上,点P(m,0)是x轴上的任意一点,若△PAB的面积为2,此时m的值是______.
    12、(4分)如图,某河堤的横断面是梯形ABCD,BC∥AD,已知背水坡CD的
    坡度i=1:2.4,CD长为13米,则河堤的高BE为 米.
    13、(4分)若,则a与b的大小关系为a_____b(填“>”、“<”或“=”)
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知:在直角坐标系中,A(﹣2,4)B(﹣4,2);A1、B1是A、B关于y轴的对称点;
    (1)请在图中画出A、B关于原点O的对称点A2,B2(保留痕迹,不写作法);并直接写出A1、A2、B1、B2的坐标.
    (2)试问:在x轴上是否存在一点C,使△A1B1C的周长最小,若存在求C点的坐标,若不存在说明理由.
    15、(8分)如图,矩形中,点分别在边与上,点在对角线上,,.
    求证:四边形是平行四边形.
    若,,,求的长.
    16、(8分)将一矩形纸片放在直角坐标系中,为原点,点在轴上,点在轴上,.
    (1)如图1,在上取一点,将沿折叠,使点落在边上的点处,求直线的解析式;
    (2)如图2,在边上选取适当的点,将沿折叠,使点落在边上的点处,过作于点,交于点,连接,判断四边形的形状,并说明理由;
    (3)、在(2)的条件下,若点坐标,点在直线上,问坐标轴上是否存在点,使以为顶点的四边形是平行四边形,若存在,请直接写出点坐标;若不存在,请说明理由.
    17、(10分)如图,有一块凹四边形土地ABCD,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m,求这块四边形土地的面积.

    18、(10分)解不等式组:,并判断是否为该不等式组的解.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,菱形ABCD中,对角线AC,BD相交于点O,点E,F分别是的边AB,BC边的中点若,
    ,则线段EF的长为______.
    20、(4分)若n边形的每个内角都等于150°,则n=_____.
    21、(4分)已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,若x1,x2满足3x1=|x2|+2,则m的值为_____
    22、(4分)已知边长为5cm的菱形,一条对角线长为6cm,则另一条对角线的长为________cm.
    23、(4分)如图,一棵大树在离地面4米高的处折断,树顶落在离树底端的5米远处,则大树折断前的高度是______米(结果保留根号).
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在矩形ABCD中,,点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是,连接PQ、AQ、设点P、Q运动的时间为ts.
    当t为何值时,四边形ABQP是矩形;
    当t为何值时,四边形AQCP是菱形.
    25、(10分)如图,平行四边形ABCD中,AE=CE.
    (1)用尺规或只用无刻度的直尺作出的角平分线,保留作图痕迹,不需要写作法.
    (2)设的角平分线交边AD于点F,连接CF,求证:四边形AECF为菱形.
    26、(12分)如图,矩形ABCD中,对角线AC与BD相交于点O.
    (1)写出与相反的向量______;
    (2)填空:++=______;
    (3)求作:+(保留作图痕迹,不要求写作法).
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据分式的性质进行判断,去掉带有负号的括号,每一项都应变号;分子与分母同除以一个不为0的数,分式的值不变.
    【详解】
    A. =,故错误;
    B. =a+,故错误;
    C. +=-=0,故正确;
    D. ﹣=,故错误;
    故选C
    本题考查了分式的加减法则以及分式的基本性质,正确理解分式的基本性质是关键.
    2、A
    【解析】
    【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.
    【详解】∵E是AC中点,
    ∵EF∥BC,交AB于点F,
    ∴EF是△ABC的中位线,
    ∴BC=2EF=2×3=6,
    ∴菱形ABCD的周长是4×6=24,
    故选A.
    【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.
    3、B
    【解析】
    连接AC、CF,根据正方形的性质求出AC、CF,并判断出△ACF是直角三角形,再利用勾股定理列式求出AF,然后根据直角三角形斜边上的中线等于斜边的一半可求解.
    【详解】
    如图,连接AC、CF,
    在正方形ABCD和正方形CEFG中,AC=BC=2,CF=CE=6,
    ∠ACD=∠GCF=45°,
    所以,∠ACF=45°+45°=90°,
    所以,△ACF是直角三角形,
    由勾股定理得,AF==4,
    ∵H是AF的中点,
    ∴CH=AF=×4=2.
    故选:B.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,难点在于作辅助线构造出直角三角形.
    4、C
    【解析】
    平行四边形中对角线互相平分,则点O是BD的中点,而E是CD边中点,根据三角形两边中点的连线平行于第三边且等于第三边的一半可得AD=1.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴OB=OD,OA=OC.
    又∵点E是CD边中点,
    ∴AD=2OE,即AD=1.
    故选:C.
    此题主要考查了平行四边形的性质及三角形中位线定理,三角形中位线性质应用比较广泛,尤其是在三角形、四边形方面起着非常重要作用.
    5、D
    【解析】
    此题有两种情况:①当a,b为直角边,c为斜边,由勾股定理求出c2即可;②当a,c为直角边,b为斜边,利用勾股定理即可求解;即可得出结论.
    【详解】
    解:当b为直角边时,c2=a2+b2=25,
    当b为斜边时,c2=b2﹣a2=7,
    故选:D.
    此题主要考查学生对勾股定理的理解和掌握;解答此题要用分类讨论的思想,学生容易忽略a,c为直角边,b为斜边时这种情况,很容易选A,因此此题是一道易错题.
    6、B
    【解析】
    由四边形ABCD是正方形,可得AD=BA,∠D=∠BAE=90°,利用直角三角形全等的判定(HL)可得Rt△ABE≌Rt△DAF,可得出边角关系,对应选项逐一验证即可.
    【详解】
    ∵四边形ABCD是正方形,
    ∴ AD=AB,∠D=∠BAE=90°,
    又AF=BE,
    ∴Rt△ABE≌Rt△DAF(HL),
    ∴∠ABE=∠DAF,∠AEB=∠DFA,AE=DF,因此C选项正确,
    又∵∠DAF+∠DFA =90°,
    ∴∠DAF+∠AEB=90°,
    ∴∠AGE=90°,即AF⊥BE,因此A选项正确,
    ∵∠EBC+∠ABE=90°,∠ABE+∠AEB=90°,∠AEB=∠AFD,
    ∴∠EBC=∠AFD,因此D选项正确,
    ∵BE=AF,若BG=GF,则AG=GE,可得,∠DAF=45°,则AF应该为正方形的对角线,从图形来看,AF不是对角线,所以与题目矛盾,所以B选项错误,
    故选:B.
    考查了正方形的性质,全等三角形的判定和性质,余角的定义,垂直的定义,熟记几何图形的概念,判定和性质定理是解题的关键,注意题目要求选不正确的.
    7、C
    【解析】
    逐项分解判断,即可得到答案.
    【详解】
    解:A选项a2+a=a(a+1);
    B选项=(m+n)(m-n);
    C选项. 不能因式分解;
    D选项. =(a+3)2.
    故选C
    本题解题的观念是理解因式分解的概念和常见的因式分解方法,即:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式).
    8、C
    【解析】
    由可得,xy=-5,然后进行排除即可.
    【详解】
    解:由,即,xy=-5,经排查只有C符合;
    故答案为C.
    本题考查了反比例函数的性质,即对于反比例函数,有xy=k是解答本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、30.
    【解析】
    利用勾股逆定理推出∠C=90°,再利用三角形的面积公式,进行计算即可.
    【详解】
    解:∵,,
    又∵

    ∴∠C=90°

    故答案为:30
    本题考查了勾股逆定理以及三角形的面积公式,掌握勾股定理是解题的关键.
    10、8
    【解析】
    由折叠的性质知,AE=CE,
    ∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+5=8cm.
    11、﹣1或3
    【解析】
    把点A(1,a)与点B(b,1)代入反比例函数y=(x>0),求出A,B坐标,延长AB交x轴于点C,如图2,设直线AB的解析式为y=mx+n,求出点C的坐标,用割补法求出PC的值,结合点C的坐标即可.
    【详解】
    解:∵点A(1,a)与点B(b,1)在反比例函数y=(x>0)图象上,
    ∴a=2,b=2,
    ∴点A(1,2)与点B(2,1),
    延长AB交x轴于点C,如图2,
    设直线AB的解析式为y=mx+n,
    则有,
    解得,
    ∴直线AB的解析式为y=﹣x+1.
    ∵点C是直线y=﹣x+1与x轴的交点,
    ∴点C的坐标为(1,0),OC=1,
    ∵S△PAB=2,
    ∴S△PAB=S△PAC﹣S△PBC=×PC×2﹣×PC×1=PC=2,
    ∴PC=2.
    ∵C(1,0),P(m,0),
    ∴|m﹣1|=2,
    ∴m=﹣1或3,
    故答案为:﹣1或3.
    本题考查的是反比例函数,熟练掌握反比例函数图像上点的特征是解题的关键.
    12、1
    【解析】
    在Rt△ABE中,根据tan∠BAE的值,可得到BE、AE的比例关系,进而由勾股定理求得BE、AE的长,由此得解.
    解:作CF⊥AD于F点,
    则CF=BE,
    ∵CD的坡度i=1:2.4=CF:FD,
    ∴设CF=1x,则FD=12x,
    由题意得CF2+FD2=CD2
    即:(1x)2+(12x)2=132
    ∴x=1,
    ∴BE=CF=1
    故答案为1.
    本题主要考查的是锐角三角函数的定义和勾股定理的应用.
    13、=
    【解析】
    先对进行分母有理化,然后与a比较即可.
    【详解】
    解:,即a=b,所以答案为=.
    本题考查含二次根式的式子大小比较,关键是对进行分母有理化.
    三、解答题(本大题共5个小题,共48分)
    14、(1)点A1、A2、B1、B2的坐标分别为(2,4),(4,2),(2,﹣4),(4,﹣2);(2)存在.
    【解析】
    (1)如图,分别延长AO和BO,使A2O=AO,B2O=BO,从而得到点A2,B2,然后利用关于y轴对称和原点对称的点的坐标特征写出点A1、A2、B1、B2的坐标;
    (2)连接A1B2交x轴于C,如图,利用点B1与B2关于x轴对称得到CB1=CB2,利用两点之间线段最短得到此时CA1+CB1的值最小,所以△A1B1C的周长最小,接着利用待定系数法求出直线A1B2的解析式为y=−3x+10,然后求出直线与x轴的交点坐标即可.
    【详解】
    解:(1)如图,点A2,B2为所作,点A1、A2、B1、B2的坐标分别为(2,4),(4,2),(2,﹣4),(4,﹣2);
    (2)存在.
    连接A1B2交x轴于C,如图,
    ∵点B1与B2关于x轴对称,
    ∴CB1=CB2,
    ∴CA1+CB1=CA1+CB2=A1B2,
    此时CA1+CB1的值最小,则△A1B1C的周长最小,
    设直线A1B2的解析式为y=kx+b,
    把A1(2,4),B2(4,﹣2)代入得,解得,
    ∴直线A1B2的解析式为y=﹣3x+10,
    当y=0时,﹣3x+10=0,解得x=,
    ∴C点坐标为(,0).
    本题考查了轴对称变换与最短路径问题,熟练掌握相关性质是解题关键.
    15、(1)证明见详解;(2)1
    【解析】
    (1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;
    (2)由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF=AE,设AE=x,则FC=AF=x,DF=8-x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.
    【详解】
    解:(1)∵矩形ABCD中,AB∥CD,
    ∴∠FCH=∠EAG,
    又∵CD=AB,BE=DF,
    ∴CF=AE,
    又∵CH=AG,
    ∴△AEG≌△CFH,
    ∴GE=FH,∠CHF=∠AGE,
    ∴∠FHG=∠EGH,
    ∴FH∥GE,
    ∴四边形EGFH是平行四边形;
    (2)如图,连接EF,AF,
    ∵EG=EH,四边形EGFH是平行四边形,
    ∴四边形GFHE为菱形,
    ∴EF垂直平分GH,
    又∵AG=CH,
    ∴EF垂直平分AC,
    ∴AF=CF=AE,
    设AE=x,则FC=AF=x,DF=8-x,
    在Rt△ADF中,AD2+DF2=AF2,
    ∴42+(8-x)2=x2,
    解得x=1,
    ∴AE=1.
    此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键.
    16、(1);(2)四边形为菱形,理由详见解析;(3)以为顶点的四边形是平行四边形时,点坐标或或
    【解析】
    (1)根据题意求得点E的坐标,再代入,把代入得到,即可解答
    (2)先由折叠的性质得出,由平行线的性质得出 ,即四边形为菱形.
    (3)为顶点的四边形是平行四边形时,点坐标或或.
    【详解】
    解:(1)如图1中,
    ,是由翻折得到,

    在中,,
    ,设,
    在中,,解得,

    设直线的解析式为,把代入得到,
    直线的解析式为.
    (2)如图2中,四边形为菱形,
    理由:是由翻折得到,
    ,.

    ,而
    .四边形为菱形.
    (3)以为顶点的四边形是平行四边形时,
    点坐标或或.
    本题考查四边形综合,根据题意做辅助线和判断等量关系列出方程是解题关键.
    17、这块土地的面积为14m1
    【解析】
    试题分析: 连接AC,先利用勾股定理求AC,再利用勾股定理逆定理证△ACB为直角三角形,根据四边形ABCD的面积=△ABC面积-△ACD面积即可计算.
    试题解析:
    连接AC,
    ∵AD=4m,CD=3m,∠ADC=90°,
    ∴AC=5m,
    △ACD的面积=×3×4=6(m²),
    在△ABC中,
    ∵AC=5m,BC=11m,AB=13m,
    ∴AC²+BC²=AB²,
    ∴△ABC为直角三角形,且∠ACB=90°,
    ∴直角△ABC的面积=×11×5=30(m²),
    ∴四边形ABCD的面积=30−6=14(m²).
    ∴该花圃的面积是14m1.
    18、,是该不等式组的解
    【解析】
    先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.
    【详解】
    解:
    由不等式①得:
    由不等式②得:
    ∴不等式组的解集为:
    ∵,
    ∴是该不等式组的解.
    本题考查的是解一元一次不等式组,以及不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤和方法.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、3
    【解析】
    由菱形性质得AC⊥BD,BO= ,AO=,由勾股定理得AO= ,由中位线性质得EF=.
    【详解】
    因为,菱形ABCD中,对角线AC,BD相交于点O,
    所以,AC⊥BD,BO= ,AO=,
    所以,AO= ,
    所以,AC=2AO=6,
    又因为E,F分别是的边AB,BC边的中点
    所以,EF=.
    故答案为3
    本题考核知识点:菱形,勾股定理,三角形中位线.解题关键点:根据勾股定理求出线段长度,再根据三角形中位线求出结果.
    20、1
    【解析】
    根据多边形的内角和定理:求解即可.
    【详解】
    解:由题意可得:,
    解得.
    故多边形是1边形.
    故答案为:1.
    主要考查了多边形的内角和定理.边形的内角和为:.此类题型直接根据内角和公式计算可得.
    21、2
    【解析】
    根据方程的系数结合根的判别式,即可得出△=20-2m≥0,解之即可得出m的取值范围.由根与系数的关系可得x1+x2=6①、x1•x2=m+2②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=-x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.
    【详解】
    ∵关于x的一元二次方程x2﹣6x+m+2=0有两个实数根x1,x2,
    ∴△=(﹣6)2﹣2(m+2)=20﹣2m≥0,
    解得:m≤1,
    ∴m的取值范围为m≤1.
    ∵关于x的一元二次方程x2﹣6x+m+2=0有两个实数根x1,x2,
    ∴x1+x2=6①,x1•x2=m+2②.
    ∵3x1=|x2|+2,
    当x2≥0时,有3x1=x2+2③,
    联立①③解得:x1=2,x2=2,
    ∴8=m+2,m=2;
    当x2<0时,有3x1=﹣x2+2④,
    联立①④解得:x1=﹣2,x2=8(不合题意,舍去).
    ∴符合条件的m的值为2.
    故答案是:2.
    本题考查了根与系数的关系以及一元二次方程的解,熟练掌握根与系数的关系公式:,是解题的关键.
    22、8
    【解析】
    根据菱形的对角线互相垂直平分,得已知对角线的一半是1.根据勾股定理,得要求的对角线的一半是4,则另一条对角线的长是8.
    【详解】
    解:在菱形ABCD中,AB=5,AC=6,
    因为对角线互相垂直平分,
    所以∠AOB=90°,AO=1,
    在RT△AOB中,BO=,
    ∴BD=2BO=8.
    注意菱形对角线的性质:菱形的对角线互相垂直平分.熟练运用勾股定理.
    23、()
    【解析】
    设出大树原来高度,用勾股定理建立方程求解即可.
    【详解】
    设这棵大树在折断之前的高度为x米,根据题意得:42+52=(x﹣4)2,∴x=4或x=40(舍),∴这棵大树在折断之前的高度为(4)米.
    故答案为:().
    本题是勾股定理的应用,解答本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.
    二、解答题(本大题共3个小题,共30分)
    24、当时,四边形ABQP为矩形; 当时,四边形AQCP为菱形.
    【解析】
    当四边形ABQP是矩形时,,据此求得t的值;
    当四边形AQCP是菱形时,,列方程求得运动的时间t;
    【详解】
    由已知可得,,
    在矩形ABCD中,,,
    当时,四边形ABQP为矩形,
    ,得
    故当时,四边形ABQP为矩形.
    由可知,四边形AQCP为平行四边形
    当时,四边形AQCP为菱形
    即时,四边形AQCP为菱形,解得,
    故当时,四边形AQCP为菱形.
    本题考查了菱形、矩形的判定与性质解决此题注意结合方程的思想解题.
    25、(1)见详解;(2)见解析.
    【解析】
    (1)只用无刻度直尺作图过程如下:①连接AC、BD交于点O,②连接EO,EO为∠AEC的角平分线;
    (2)先根据AF=EC,AF∥CE,判定四边形AECF是平行四边形,再根据AE=EC,即可得出平行四边形AECF是菱形.
    【详解】
    解:(1)如图所示,EO为∠AEC的角平分线;
    (2)∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠AFE=∠FEC,
    又∵∠AEF=∠CEF,
    ∴∠AEF=∠AFE,
    ∴AE=AF,
    ∴AF=EC,
    ∴四边形AECF是平行四边形,
    又∵AE=EC,
    ∴平行四边形AECF是菱形.
    本题主要考查了平行四边形的性质以及菱形的判定,解题时注意:一组邻边相等的平行四边形是菱形.
    26、 (1) ,;(2);(3)见解析.
    【解析】
    (1)观察图形直接得到结果;
    (2)由+=,+=即可得到答案;
    (3)根据平行四边形法则即可求解.
    【详解】
    解:(1)与相反的向量有,.
    (2)∵+=,+=,
    ∴++=.
    (3)如图,作平行四边形OBEC,连接AE,即为所求.
    故答案为(1) ,;(2);(3)见解析.
    本题考查了平面向量,平面向量知识在初中数学教材中只有沪教版等极少数版本中出现.
    题号





    总分
    得分
    批阅人
    相关试卷

    湖北省孝感市名校2025届数学九上开学调研模拟试题【含答案】: 这是一份湖北省孝感市名校2025届数学九上开学调研模拟试题【含答案】,共25页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    湖北省孝感市安陆市2024年九上数学开学联考试题【含答案】: 这是一份湖北省孝感市安陆市2024年九上数学开学联考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省孝感市孝昌县数学九上开学调研试题【含答案】: 这是一份2024年湖北省孝感市孝昌县数学九上开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map