湖北省恩施州利川市长坪民族初级中学2024年数学九上开学经典模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若等腰三角形的周长为60 cm,底边长为x cm,一腰长为y cm,则y关于x的函数解析式及自变量x的取值范围是( )
A.y=60-2x(0
A.x≥0且x≠2B.x≥0C.x≠2D.x>2
3、(4分)下列条件中能构成直角三角形的是( ).
A.2、3、4B.3、4、5C.4、5、6D.5、6、7
4、(4分)下图为正比例函数的图像,则一次函数的大致图像是( )
A.B.C.D.
5、(4分)已知正比例函数,且随的增大而减小,则的取值范围是( )
A.B.C.D.
6、(4分)如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是( )
A.1或9B.3或5C.4或6D.3或6
7、(4分)下列图案中,不是中心对称图形的是( )
A.B.
C.D.
8、(4分)下列字母中既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,过点N(0,-1)的直线y=kx+b与图中的四边形ABCD有不少于两个交点,其中A(2,3)、B(1,1)、C(4,1)、D(4,3),则k的取值范围____________
10、(4分)已知直线过点和点,那么关于的方程的解是________.
11、(4分)如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.
(Ⅰ)∠ABC的大小为_____(度);
(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45°,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.
12、(4分)若方程的解是正数,则m的取值范围_____.
13、(4分)如图在中,,,,是边上的两点,且满足,若,,,的长是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)阅读理解题
在平面直角坐标系中,点到直线的距离公式为:,
例如,求点到直线的距离.
解:由直线知:
所以到直线的距离为:
根据以上材料,解决下列问题:
(1)求点到直线的距离.
(2)若点到直线的距离为,求实数的值.
15、(8分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:
①金卡售价600元/张,每次凭卡不再收费.
②银卡售价150元/张,每次凭卡另收10元.
暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.
(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;
(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;
(3)请根据函数图象,直接写出选择哪种消费方式更合算.
16、(8分)先化简,再求值:,其中是满足不等式组的整数解.
17、(10分)如图,为等边三角形,,、相交于点,于点,,.
(1)求证:;
(2)求的长.
18、(10分)如图,A,B两点的坐标分别为(3,0)、(0,2),将线段AB平移至A1B1,且A1(5,b)、B1(a,3).
(1)将线段A1B1绕点A1顺时针旋转60°得线段A1B2,连接B1B2得△A1B1B2,判断△A1B1B2的形状,并说明理由;
(2)求线段AB平移到A1B1的距离是多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在菱形ABCD中,∠BAD=70°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF.则∠CDF等于_____.
20、(4分)菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长是_______cm.
21、(4分)如图,是菱形的对角线上一点,过点作于点. 若,则点到边的距离为______.
22、(4分)点P(﹣3,4)到x轴和y轴的距离分别是_____.
23、(4分)若,化简的正确结果是________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在正方形ABCD中,AF=BE,AE与DF相交于于点O.
(1)求证:△DAF≌△ABE;
(2)求∠AOD的度数.
25、(10分)如图,直线与直线相交于点.
(1)求,的值;
(2)根据图像直接写出时的取值范围;
(3)垂直于轴的直线与直线,分别交于点,,若线段长为2,求的值.
26、(12分)如图,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=1.
(1)求反比例函数解析式;
(2)求点C的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
∵2y+x=60,
∴y= (60-x)(0
2、A
【解析】
由被开方数大于等于0,分母不等于0可得x≥0且x−1≠0,即x≥0且x≠1.故选A.
【考点】本题考查函数自变量的取值范围.
3、B
【解析】
根据勾股定理逆定理进行计算判断即可.
【详解】
A.,故不能构成直角三角形;
B.,故能构成直角三角形;
C.,故不能构成直角三角形;
D.,故不能构成直角三角形.
故选:B.
本题考查勾股定理的逆定理,熟记定理是关键,属于基础题型.
4、B
【解析】
根据正比例函数图象所经过的象限,得出k<0,由此可推知一次函数象与y轴交于负半轴且经过一、三象限.
【详解】
解:∵正比例函数y=kx(k≠0)的图象经过二、四象限,
∴k<0,
∴一次函数y=x+k的图象与y轴交于负半轴且经过一、三象限.
故选B.
本题考查了一次函数图象与比例系数的关系.
5、D
【解析】
根据正比例函数的性质,时,随的增大而减小,即,即可得解.
【详解】
根据题意,得
即
故答案为D.
此题主要考查正比例函数的性质,熟练掌握,即可解题.
6、D
【解析】
以AB为对角线将图形补成长方形,由已知可得缺失的两部分面积相同,即3×6=x×(9-x),解得x=3或x=6,故选D.
【点睛】本题考查了正方形的性质,图形的面积的计算,准确地区分和识别图形是解题的关键.
7、D
【解析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;对于图A,分析可知,其绕着图形的圆心旋转180°后与原来的图形重合,故是中心对称图形,同理再分析其他选项即可.
【详解】
根据中心对称图形的概念可知,A、B、C都是中心对称图形,不符合题意;
D不是中心对称图形,符合题意.
故选:D.
本题考查了中心对称图形的判断,解题的关键是掌握中心对称图形定义;
8、A
【解析】
根据中心对称图形及轴对称图形的概念即可解答.
【详解】
选项A是轴对称图形,也是中心对称图形;
选项B是轴对称图形,不是中心对称图形;
选项C不是轴对称图形,也不是中心对称图形;
选项D不是轴对称图形,是中心对称图形.
故选A.
本题考查了中心对称图形及轴对称图形的概念,熟知中心对称图形及轴对称图形的判定方法是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、<k≤2.
【解析】
直线y=kx+b过点N(0,-2),则b=-2,y=kx-2.当直线y=kx-2的图象过A点时,求得k的值;当直线y=kx-2的图象过B点时,求得k的值;当直线y=kx-2的图象过C点时,求得k的值,最后判断k的取值范围.
【详解】
∵直线y=kx+b过点N(0,-2),
∴b=-2,
∴y=kx-2.
当直线y=kx-2的图象过A点(2,3)时,
2k-2=3,k=2;
当直线y=kx-2的图象过B点(2,2)时,
k-2=2,k=2;
当直线y=kx-2的图象过C点(4,2)时,
4k-2=2,k=,
∴k的取值范围是<k≤2.
故答案为<k≤2.
本题主要考查了运用待定系数法求一次函数解析式,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.
10、
【解析】
观察即可知关于的方程的解是函数中y=0时x的值.
【详解】
解:∵直线过点
∴当y=0时x=-3
即的解为x=-3
故答案为:
本题考查了一次函数与一元一次方程的问题,掌握函数图像上的点与方程的关系是解题的关键.
11、90.
【解析】
(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;
(Ⅱ)构造正方形BCDE即可.
【详解】
(Ⅰ)如图,∵△ABM是等腰直角三角形,
∴∠ABM=90°
(Ⅱ)构造正方形BCDE,∠AEC即为所求;
故答案为90
本题考查作图-应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题
12、m>-2且m≠0
【解析】
分析:本题解出分式方程的解,根据题意解为正数并且解不能等于2,列出关于m的取值范围.
解析:解方程 解为正数,∴ 且m≠0.
故答案为m>-2且m≠0
13、
【解析】
以点B为旋转中心,将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处),如下图,利用等腰直角三角形的性质得,利用旋转的性质得,,则,在中利用勾股定理可计算出,然后再根据证明三角形即可得到.
【详解】
以点B为旋转中心,将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处),如图
按顺时针方向旋转得到
在中,
将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处)
,
,即
在和中
∴.
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质和勾股定理.
三、解答题(本大题共5个小题,共48分)
14、(1)1;(2)1或-3.
【解析】
(1)根据点到直线的距离公式求解即可;
(2)根据点到直线的距离公式,列出方程即可解决问题.
【详解】
解:由直线知:A=3,B=-4,C=-5,
∴点到直线的距离为:
d=;
(2)由点到直线的距离公式得:
∴|1+C|=2
解得:C=1或-3.
点睛:本题考查点到直线的距离公式的运用,解题的关键是理解题意,学会把直线的解析式转化为Ax+By+C=0的形式,学会构建方程解决问题.
15、(1)银卡消费:y=10x+150,普通消费:y=20x;(2)A(0,150),B(15,300),C(45,600);(3)答案见解析.
【解析】
试题分析:(1)根据银卡售价150元/张,每次凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;
(2)利用函数交点坐标求法分别得出即可;
(3)利用(2)的点的坐标以及结合得出函数图象得出答案.
解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;
(2)由题意可得:当10x+150=20x,
解得:x=15,则y=300,
故B(15,300),
当y=10x+150,x=0时,y=150,故A(0,150),
当y=10x+150=600,
解得:x=45,则y=600,
故C(45,600);
(3)如图所示:由A,B,C的坐标可得:
当0<x<15时,普通消费更划算;
当x=15时,银卡、普通票的总费用相同,均比金卡合算;
当15<x<45时,银卡消费更划算;
当x=45时,金卡、银卡的总费用相同,均比普通票合算;
当x>45时,金卡消费更划算.
【点评】此题主要考查了一次函数的应用,根据数形结合得出自变量的取值范围得出是解题关键.
16、化简得: 求值得:.
【解析】
先解不等式组,求得不等式组的整数解,后利用分式混合运算化简分式,把使分式有意义的字母的值代入求值即可.
【详解】
解:因为,解得:<,
因为为整数,所以 .
原式
因为,所以取,
所以:上式.
本题考查分式的化简求值,不等式组的解法,特别要注意求值时学生容易忽视分式有意义的条件.
17、 (1)见解析;(2)7.
【解析】
(1)根据等边三角形的三条边都相等可得AB=CA,每一个角都是60°可得,∠BAE=∠ACD=60°,然后利用“边角边”证明△ABE和△CAD全等,根据全等三角形对应边相等证明即可;
(2)根据全等三角形对应角相等可得∠CAD=∠ABE,然后求出∠BPQ=60°,再根据直角三角形两锐角互余求出∠PBQ=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出BP=2PQ,再根据AD=BE=BP+PE代入数据进行计算即可得解.
【详解】
(1)证明:为等边三角形,
,;
在和中,
,
,
;
(2),
,
;
,
,
,
,
在中,,
又,
.
本题考查了等边三角形的性质,全等三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半,熟记性质并求出BP=2PQ是解题的关键.
18、(1)见解析;(2).
【解析】
(1)旋转60°,外加一个两边的长度相等,所以△A1B1B2是等边三角形
(2)AA’即为所求,根据勾股定理易得长度.
【详解】
解:(1)∵B1A1=A1B2,∠B1A1B2=60°,
∴△A1B1B2是等边三角形.
(2)线段AB平移到A1B1的距离是线段AA1的长,AA1==.
本题主要坐标的旋转和平移的长度问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、75°
【解析】
根据菱形的性质求出∠ADC=110°,再根据垂直平分线的性质得出AF=DF,从而计算出∠CDF的值.
【详解】
解:连接BD,BF,
∵∠BAD=70°,
∴∠ADC=110°,
又∵EF垂直平分AB,AC垂直平分BD,
∴AF=BF,BF=DF,
∴AF=DF,
∴∠FAD=∠FDA=35°,
∴∠CDF=110°-35°=75°.
故答案为75°.
此题主要考查线段的垂直平分线的性质和菱形的性质,有一定的难度,解答本题时注意先先连接BD,BF,这是解答本题的突破口.
20、20cm
【解析】
根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.
【详解】
解:如图,∵四边形ABCD是菱形,
∴AC⊥BD,OA=AC=×6=3cm,
OB=BD=×8=4cm,
根据勾股定理得,AB=,
所以,这个菱形的周长=4×5=20cm.
故答案为:20
本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.
21、4
【解析】
首先根据菱形的性质,可得出∠ABD=∠CBD,然后根据角平分线的性质,即可得解.
【详解】
解:∵四边形ABCD为菱形,BD为其对角线
∴∠ABD=∠CBD,即BD为角平分线
∴点E到边AB的距离等于EF,即为4.
此题主要考查菱形和角平分线的性质,熟练运用,即可解题.
22、4;1.
【解析】
首先画出坐标系,确定P点位置,根据坐标系可得答案.
【详解】
点P(﹣1,4)到x轴的距离为4,到y轴的距离是1.
故答案为:4;1.
本题考查了点的坐标,关键是正确确定P点位置.
23、1.
【解析】
根据二次根式的性质,绝对值的性质,先化简代数式,再合并.
【详解】
解:∵2<x<3,
∴|x-2|=x-2,|3-x|=3-x,
原式=|x-2|+3-x
=x-2+3-x
=1.
故答案为:1.
本题考查二次根式的性质及绝对值的性质,能正确根据二次根式的性质进行化简是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)90°
【解析】
分析:(1)利用正方形的性质得出,即可得出结论;
(2)利用(1)的结论得出∠ADF=∠BAE,进而求出∠ADF+∠DAO=90°,最后用三角形的内角和定理即可得出结论.
详解:(1)证明:∵四边形ABCD是正方形,
∴
在△DAF和△ABE中,
∴△DAF≌△ABE(SAS),
(2)由(1)知,△DAF≌△ABE,
∴∠ADF=∠BAE,
∵
∴
点睛:此题主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和定理,判断出△DAF≌△ABR是解本题的关键.
25、(1),;(2);(3)或
【解析】
(1)将点代入到直线中,即可求出b的值,然后将点P的坐标代入直线中即可求出m的值;
(2)根据图象即可得出结论;
(3)分别用含a的式子表示出点C和点D的纵坐标,再根据CD的长和两点之间的距离公式列出方程即可求出a.
【详解】
解:(1)∵点在直线上
∴
∵点在直线上,
∴
∴
(2)由图象可知:当时,;
(3)当时,,当时,
∵
∴
解得或
此题考查的是一次函数的图象及性质,掌握根据直线上的点求直线的解析式、一次函数与一元一次不等式的关系和直角坐标系中两点之间的距离公式是解决此题的关键.
26、(1)反比例函数解析式为y=;(2)C点坐标为(2,1)
【解析】
(1)由S△BOD=1可得BD的长,从而可得D的坐标,然后代入反比例函数解析式可求得k,从而得解析式为y=;
(2)由已知可确定A点坐标,再由待定系数法求出直线AB的解析式为y=2x,然后解方程组即可得到C点坐标.
【详解】
(1)∵∠ABO=90°,OB=1,S△BOD=1,
∴OB×BD=1,解得BD=2,
∴D(1,2)
将D(1,2)代入y=,
得2=,
∴k=8,
∴反比例函数解析式为y=;
(2)∵∠ABO=90°,OB=1,AB=8,
∴A点坐标为(1,8),
设直线OA的解析式为y=kx,
把A(1,8)代入得1k=8,解得k=2,
∴直线AB的解析式为y=2x,
解方程组得或,
∴C点坐标为(2,1).
题号
一
二
三
四
五
总分
得分
湖北省恩施州利川市长坪民族初级中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】: 这是一份湖北省恩施州利川市长坪民族初级中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届湖北省利川市谋道镇长坪民族初级中学九上数学开学复习检测试题【含答案】: 这是一份2025届湖北省利川市谋道镇长坪民族初级中学九上数学开学复习检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年湖北省恩施州利川市长坪民族初级中学八上数学期末达标检测模拟试题含答案: 这是一份2023-2024学年湖北省恩施州利川市长坪民族初级中学八上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,不等式组的最小整数解是,下列图形中,不具有稳定性的是等内容,欢迎下载使用。