2025届湖北省利川市数学九上开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一个多边形的内角和是外角和的倍,则这个多边形的边数为( )
A.B.C.D.
2、(4分)如图,在△ABC中,∠C=90°,∠B=15°,AC=3,AB的垂直平分线l交BC于点D,连接AD,则BC的长为( )
A.12B.3+3C.6+3D.6
3、(4分)如图,,,点在边上(与、不重合),四边形为正方形,过点作,交的延长线于点,连接,交于点,对于下列结论:①;②四边形是矩形;③.其中正确的是( )
A.①②③B.①②C.①③D.②③
4、(4分)下列四组线段中,可以构成直角三角形的是( )
A.4, 5, 6B.5, 12, 13C.2, 3, 4D.1, ,3
5、(4分)下列图形是中心对称图形,但不是轴对称图形的是( )
A.B.C.D.
6、(4分)如图,在中,,若的周长为13,则的周长为( )
A.B.C.D.
7、(4分)用三种正多边形铺设地板,其中两种是正方形和正五边形,则第三种正多边形的边数是( )
A.12B.15C.18D.20
8、(4分)已知a<b,下列不等关系式中正确的是( )
A.a+3>b+3B.3a>3bC.﹣a<﹣bD.﹣>﹣
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是_________________.
10、(4分)若等腰三角形的两条边长分别为8cm和16cm,则它的周长为_____cm.
11、(4分)计算的结果为______.
12、(4分)若关于x的一元一次不等式组有解,则m的取值范围为__________.
13、(4分)平面直角坐标系中,将直线l:y=2x-1沿y轴向下平移b个单位长度后后得到直线l′,点A(m,n)是直线l′上一点,且2m-n=3,则b =_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校初中部三个年级共挑选名学生进行跳绳测试,其中七年级人,八年级人,九年级人,体育老师在测试后对测试成绩进行整理,得到下面统计图表.
(1)表格中的落在 组(填序号);
①; ②;③;④;⑤;⑥;⑦
(2)求这名学生的平均成绩;
(3)在本次测试中,八年级与九年级都只有位学生跳下,判断这两位学生成绩在自己所在年级参加测试学生中的排名,谁更考前?请简要说明理由.
15、(8分)已知,如图,E、F分别为□ABCD的边BC、AD上的点,且∠1=∠2,.求证:AE=CF.
16、(8分)已知:直线始终经过某定点.
(1)求该定点的坐标;
(2)已知,,若直线与线段相交,求的取值范围;
(3)在范围内,任取3个自变量,,,它们对应的函数值分别为,,,若以,,为长度的3条线段能围成三角形,求的取值范围.
17、(10分)在△ABC中,AB=AC=10,D为BC边上的中点,BD=6,连接AD.
(1)尺规作图:作AC边的中垂线交AD于点P;(保留作图痕迹,不要求写作法和证明)
(2)连接CP,求△DPC的周长.
18、(10分)如图所示,在中,,,,点从点出发沿方向以每秒2个单位长度的速度向点匀速运动,同时点从点出发沿方向以每秒1个单位长度的速度向点匀速运动,当其中一点到达终点时,另一个点也随之停止运动.设点、运动的时间是秒,过点作于点,连接、.
(1)求证:;
(2)四边形能够成为菱形吗?若能,求出的值;若不能,请说明理由;
(3)当________时,为直角三角形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一次函数y=2x与y=-x+b的交点为(1,a),则方程组的解为______.
20、(4分)如图,是将绕点顺时针旋转得到的.若点,,在同一条直线上,则的度数是______.
21、(4分)将函数的图象向上平移2个单位,所得的函数图象的解析为________.
22、(4分)(2011贵州安顺,17,4分)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为 .
23、(4分)如图,已知函数y=x+2b和y=ax+3的图象交于点P,则不等式x+2b>ax+3的解集为________ .
二、解答题(本大题共3个小题,共30分)
24、(8分)校团委决定对甲、乙、丙三位候选人进行民主投票、笔试、面试考核,从中推选一名担任学生会主席.已知参加民主投票的学生为200名,每人当且仅当推荐一名候选人,民主投票结果如下扇形统计图所示,笔试和面试的成绩如下统计表所示.
(1)甲、乙、丙的得票数依次是______、______、______;
(2)若民主投票得一票记1分,学校将民主投票、笔试、面试三项得分按3:4:3的比例确定三名候选人的考核成绩,成绩最高当选,请通过计算确定谁当选.
25、(10分)如图,在△ABC中,AB=10,BC=8,AC=1.点D在AB边上(不包括端点),DE⊥AC,DF⊥BC,垂足分别为点E和点F,连结EF.
(1)判断四边形DECF的形状,并证明;
(2)线段EF是否存在最小值?如果存在,请求出最小值;如果不存在,请说明理由.
26、(12分)如图,在Rt△ABC中,∠C=90°,AC=5,AB=13,求BC.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
设这个多边形有n条边,根据内角和是它的外角和的2倍,列方程,然后解方程即可.
【详解】
解:设这个多边形有n条边.
由题意得:(n﹣2)×180°=310°×:2,
解得n=1.
故这个多边形的边数是1.
故选B
此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)•180°,外角和为310°.
2、C
【解析】
利用垂直平分线的性质可得∠DAB=∠B=15°,可得∠ADC=30°,易得AD=BD=2AC,CD=AC,然后根据BC=BD+CD可得出结果.
【详解】
解:∵AB的垂直平分线l交BC于点D,
∴AD=DB,
∴∠B=∠DAB=15°,
∴∠ADC=30°,
∵∠C=90°,AC=3,
∴AD=6=BD,CD=3.
∴BC=BD+CD=6+3.
故选:C.
本题主要考查了垂直平分线的性质、含30°直角三角形的性质以及勾股定理,综合运用各性质定理是解答此题的关键.
3、A
【解析】
由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;
由△AFG≌△DAC,推出四边形BCGF是矩形,②正确;
由矩形的性质和相似三角形的判定定理证出△ACD∽△FEQ,③正确.
【详解】
解:①∵四边形ADEF为正方形,
∴∠FAD=90°,AD=AF=EF,
∴∠CAD+∠FAG=90°,
∵FG⊥CA,
∴∠GAF+∠AFG=90°,
∴∠CAD=∠AFG,
在△FGA和△ACD中,,
∴△FGA≌△ACD(AAS),
∴AC=FG.
故正确;
②∵BC=AC,
∴FG=BC,
∵∠ACB=90°,FG⊥CA,
∴FG∥BC,
∴四边形CBFG是矩形.
故正确;
③∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
∴△ACD∽△FEQ.
故正确.
综上所述,正确的结论是①②③.
故选A.
本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.
4、B
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定即可.
【详解】
解:A、∵42+52≠62,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;
B、∵52+122=132,∴该三角形符合勾股定理的逆定理,故可以构成直角三角形;
C、∵22+32≠42,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形;
D、∵12+()2≠32,∴该三角形不符合勾股定理的逆定理,故不可以构成直角三角形.
故选:B.
本题考查勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
5、C
【解析】
根据中心对称图形与轴对称图形的定义即可判断.
【详解】
A.角是轴对称图形,不是中心对称图形,故错误;
B不一定是轴对称图形,不是中心对称图形,故错误;
C是中心对称图形,不是轴对称图形,故正确;
D是轴对称图形,不是中心对称图形,故错误;
故选C.
此题主要考查中心对称图形与轴对称图形的识别,解题的关键是熟知中心对称图形与轴对称图形的性质.
6、D
【解析】
求出AB+BC的值,其2倍便是平行四边形的周长.
【详解】
解:的周长为13,,
,
则平行四边形周长为,
故选:.
本题主要考查了平行四边形的性质,解题的规律是求解平行四边形的周长就是求解两邻边和的2倍.
7、D
【解析】
根据正方形和正五边形的内角度数以及拼成一个圆周角,求出正多边的一个内角,从而判断正多边形的边数.
【详解】
正方形和正五边形的内角分别为和
所以可得正多边形的内角为
所以可得
可得
故选D.
本题主要考查正多边形的内角和,关键在于他们所围成的圆周角为 .
8、D
【解析】
根据不等式的性质逐一判断即可.
【详解】
A:不等式两边都加3,不等号的方向不变,原变形错误,故此选项不符合题意;
B:不等式两边都乘以3,不等号的方向不变,原变形错误,故此选项不符合题意;
C:不等式两边都乘﹣1,不等号的方向改变,原变形错误,故此选项不符合题意;
D不等式两边都除以﹣2,不等号的方向改变,原变形正确,故此选项符合题意;
故选:D.
本题主要考查了不等式的性质,熟记不等式在两边都乘除负数时,不等式符号需要改变方向是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、m>1
【解析】
试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.
试题解析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,
联立两直线解析式得:,
解得:,
即交点坐标为(,),
∵交点在第一象限,
∴,
解得:m>1.
考点:一次函数图象与几何变换.
10、1;
【解析】
根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为3cm,只能为8cm,依此即可求得等腰三角形的周长.
【详解】
解:∵等腰三角形的两条边长分别为3cm,8cm,
∴由三角形三边关系可知;等腰三角形的腰长不可能为8cm,只能为16cm,
∴等腰三角形的周长=16+16+8=1cm.
故答案为1.
本题考查了三角形三边关系及等腰三角形的性质,关键是要分两种情况解答.
11、
【解析】
先分母有理化,然后进行二次根式的乘法运算.
【详解】
解:原式==(2+)= .
故答案为:2+1.
本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
12、m.
【解析】
首先解不等式,利用m表示出两个不等式的解集,根据不等式组有解即可得到关于m的不等式,从而求解.
【详解】
,
解①得:x<2m,解②得:x>2﹣m,
根据题意得:2m>2﹣m,解得:m.
故答案为:m.
本题考查了解不等式组,解决本题的关键是熟记确定不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
13、2
【解析】
先写出直线l′的解析式为y=2x-1-b,代入点A的坐标得到n=2m-1-b,因为2m-n=3,即可解答出b的值.
【详解】
∵直线l′为y=2x-1沿y轴向下平移b个单位长度,
∴直线l′:y=2x-1-b,
∵点A(m,n)是直线l′上一点,
∴n=2m-1-b
又∵且2m-n=3,解得b=2.
故答案为:2.
此题考查一次函数,解题关键在于一次函数图象的平移.
三、解答题(本大题共5个小题,共48分)
14、(1)④;(2)80;(3)八年级得分的那位同学名次较靠前,理由详见解析.
【解析】
(1)根据题意,七年级由40人,则中位数应该在第20和21个人取平均值,即可得到答案;
(2)利用加权平均数,即可求出100名学生的平均成绩;
(3)由题意,八九年级人数一样,则比较中位数,即可得到答案.
【详解】
解:根据直方图可知,七年级第20和第21个人都落在;
故答案为:④.
(2)这名学生的平均成绩为:
;
(3)八年级得分的那位同学名次较靠前,
理由如下:
依题意得:八年级和九年级被挑选的学生人数相同,分别把两个年级的成绩按从高到低排列,由两个年级的中位数可知,八年级跳下的学生在该年级排名中上,而八年级跳下的学生在该年级排名中下,八年级得分的那位同学名次较靠前.
本题考查了众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.
15、详见解析
【解析】
通过证明三角形全等求得两线段相等即可.
【详解】
∵四边形ABCD为平行四边形
∴∠B=∠D,AB=CD
在△ABE与△CDF中,∠1=∠2,∠B=∠D,AB=CD
∴△ABE≌△CDF
∴AE=CF
本题主要考查平行四边形性质与全等三角形,解题关键在于找到全等三角形.
16、(1);(2);(3)或.
【解析】
(1)对题目中的函数解析式进行变形即可求得点的坐标;
(2)根据题意可以得到相应的不等式组,从而可以求得的取值范围;
(3)根据题意和三角形三边的关系,利用分类讨论的数学思想可以求得的取值范围.
【详解】
(1),
当时,,即为点;
(2)点、坐标分别为、,直线与线段相交,
直线恒过某一定点,
,
解得,;
(3)当时,直线中,随的增大而增大,
当时,,
以、、为长度的3条线段能围成三角形,
,得,
;
当时,直线中,随的增大而减小,
当时,,
以、、为长度的3条线段能围成三角形,
,得,
,
由上可得,或.
本题考查一次函数图象与系数的关系、一次函数图象上点的坐标特征、三角形三边关系,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.
17、(1)见解析;(2)1
【解析】
(1)利用基本作图作AC的垂直平分线得到点P;
(2)根据线段垂直平分线的性质得到PA=PC,则利用等线段代换得到△DPC的周长=DA+DC,再根据等腰三角形的性质得到AD⊥BC,利用勾股定理计算出AD=8,从而可计算出△DPC的周长.
【详解】
解:(1)如图,点D为所作;
(2)∵AC边的中垂线交AD于点P,
∴PA=PC,
∴△DPC的周长=DP+DC+PC=DP+PA+DC=DA+DC,
∵AB=AC=10,D为BC边上的中点,
∴AD⊥BC,CD=BD=6,
∴AD==8,
∴△DPC的周长=8+6=1.
本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.
18、(1)详见解析;(2)能;(3)2或秒
【解析】
(1)在中,,,由已知条件求证;
(2)求得四边形为平行四边形,若使平行四边形为菱形则需要满足的条件及求得;
(3)分三种情况:①时,四边形为矩形.在直角三角形中求得即求得.②时,由(2)知,则得,求得.③时,此种情况不存在.
【详解】
(1)在中,
∴
又∵
∴
(2)能. 理由如下:
∵,
∴
又∵
∴四边形为平行四边形
在中,
∴
又∵
∴
∴,
∴
当时,为菱形
∴AD=
∴,即秒时,四边形为菱形
(3)①时,四边形为矩形.
在中,,
.
即,.
②时,由(2)四边形为平行四边形知,
.
,
.
则有,.
③当时,此种情况不存在.
综上所述,当秒或秒时,为直角三角形.
本题考查了菱形的性质,考查了菱形是平行四边形,考查了菱形的判定定理,以及菱形与矩形之间的联系.难度适宜,计算繁琐.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
把(1,a)代入y=2x可确定交点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标的横纵坐标,由此即可求解.
【详解】
解:把(1,a)代入y=2x得a=2,
所以方程组的解为.
故答案为:.
本题考查了一次函数与二元一次方程(组)的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
20、
【解析】
根据旋转的性质,即可求出的度数.
【详解】
旋转,
,,
,
.
故答案为:.
本题考查了三角形的旋转问题,掌握旋转的性质是解题的关键.
21、
【解析】
根据“上加下减”的原则进行解答即可.
【详解】
解:由“上加下减”的原则可知,将函数y=3x的图象向上平移2个单位所得函数的解析式为.
故答案为:.
本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.
22、P(5,5)或(4,5)或(8,5)
【解析】
试题解析:由题意,当△ODP是腰长为4的等腰三角形时,有三种情况:
(5)如图所示,PD=OD=4,点P在点D的左侧.
过点P作PE⊥x轴于点E,则PE=5.
在Rt△PDE中,由勾股定理得:DE=,
∴OE=OD-DE=4-5=4,
∴此时点P坐标为(4,5);
(4)如图所示,OP=OD=4.
过点P作PE⊥x轴于点E,则PE=5.
在Rt△POE中,由勾股定理得: OE=,
∴此时点P坐标为(5,5);
(5)如图所示,PD=OD=4,点P在点D的右侧.
过点P作PE⊥x轴于点E,则PE=5.
在Rt△PDE中,由勾股定理得: DE=,
∴OE=OD+DE=4+5=8,
∴此时点P坐标为(8,5).
综上所述,点P的坐标为:(4,5)或(5,5)或(8,5).
考点:5.矩形的性质;4.坐标与图形性质;5.等腰三角形的性质;5.勾股定理.
23、x>1
【解析】
解:由图象可知:当x>1时,.故答案为:x>1.
二、解答题(本大题共3个小题,共30分)
24、(1)50、80、70;(2)乙的平均成绩最高,应录用乙.
【解析】
(1)分别用总票数乘以甲,乙,丙各自得票数的百分比即可得出各自的得票数;
(2)按照加权平均数的求法 分别求出甲,乙,丙的成绩,选出成绩最高者即可.
【详解】
(1)甲的得票数为:200×25%=50(票),
乙的得票数为:200×40%=80(票),
丙的得票数为:200×35%=70(票),
(2)甲的平均成绩:
;
乙的平均成绩:
;
丙的平均成绩:
;
∵78.5>76>73.8,
∴乙的平均成绩最高,应录用乙.
本题主要考查加权平均数和扇形统计图,掌握加权平均数的求法是解题的关键.
25、(1)四边形DECF是矩形,理由见解析;(2)存在,EF=4.2.
【解析】
(1)根据勾股定理的逆定理得到△ABC是直角三角形,∠C=90°,由垂直的定义得到∠DEC=DFC=90°,于是得到四边形DECF是矩形;
(2)连结CD,由矩形的性质得到CD=EF,当CD⊥AB时,CD取得最小值,即EF为最小值,根据三角形的面积即可得到结论.
【详解】
解:(1)四边形DECF是矩形,
理由:∵在△ABC中,AB=10,BC=2,AC=1,
∴BC2+AC2=22+12=102=AB2,
∴△ABC是直角三角形,∠C=90°,
∵DE⊥AC,DF⊥BC,
∴∠DEC=DFC=90°,
∴四边形DECF是矩形;
(2)存在,连结CD,
∵四边形DECF是矩形,
∴CD=EF,
当CD⊥AB时,CD取得最小值,即EF为最小值,
∵S△ABC=AB•CD=AC•BC,
∴10×CD=1×2,
∴EF=CD=.
本题考查了矩形的判定和性质,垂线段最短,勾股定理的逆定理,三角形的面积,熟练掌握矩形的判定定理是解题的关键.
26、12
【解析】
在Rt△ABC中,∠C=90°,AC=5,AB=13,根据勾股定理,即可求出BC.
【详解】
解:∵在Rt△ABC中,∠C=90°,
∴
∴
∴
又∵AC=5,AB=13,
∴
=
=12
此题主要考查勾股定理的运用.
题号
一
二
三
四
五
总分
得分
批阅人
年级
平均成绩
中位数
众数
七年级
78.5
m
85
八年级
80
78
82
九年级
82
85
84
甲
乙
丙
笔试
78
80
85
面试
92
75
70
2025届湖北省利川市谋道镇长坪民族初级中学九上数学开学复习检测试题【含答案】: 这是一份2025届湖北省利川市谋道镇长坪民族初级中学九上数学开学复习检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年新疆师大附中数学九上开学监测模拟试题【含答案】: 这是一份2024年新疆师大附中数学九上开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖北省孝感市孝南区部分学校数学九上开学监测模拟试题【含答案】: 这是一份2024年湖北省孝感市孝南区部分学校数学九上开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。