黑龙江省佳木斯市向阳区第五中学2024-2025学年数学九上开学复习检测试题【含答案】
展开
这是一份黑龙江省佳木斯市向阳区第五中学2024-2025学年数学九上开学复习检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,点E是矩形ABCD的边DC上的点,将△AED沿着AE翻折,点D刚好落在对角线AC的中点D’处,则∠AED的度数为( )
A.50°B.60°C.70°D.80°
2、(4分)我国“一带一路”战略给沿线国家和地区带来了很大的经济效益,沿线某地区居民2017年年人均收入为3800美元,预计2019年年人均收入将达到5000美元,设2017年到2019年该地区居民年人均收入平均增长率为,可列方程为( )
A.B.
C. D.
3、(4分)下列说法中,错误的是( )
A.两组对边分别相等的四边形是平行四边形
B.有一个角是直角的平行四边形是矩形
C.有三条边相等的四边形是菱形
D.对角线互相垂直的矩形是正方形
4、(4分)已知一次函数的图象如图所示,当时,y的取值范围是
A.
B.
C.
D.
5、(4分)如图,已知直线y=x与双曲线y= (k>0)交于A,B两点,且点A的横坐标为4.点C是双曲线上一点,且纵坐标为8,则△AOC的面积为( )
A.8B.32C.10D.15
6、(4分)在Rt△ABC中,BC是斜边,∠B=40°,则∠C=( )
A.90°B.60°C.50°D.40°
7、(4分)下面的图形是天气预报的图标,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
8、(4分) 如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC与B′C′相交于点H,则图中△AHC′的面积等于( )
A.12﹣6B.14﹣6C.18﹣6D.18+6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,若∠ADB=36°,则∠E=_____°.
10、(4分)已知点A(m,n),B(5,3)关于x轴对称,则m + n =______.
11、(4分)如图1,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,我们把的值叫做这个菱形的“形变度”.例如,当形变后的菱形是如图2形状(被对角线BD分成2个等边三角形),则这个菱形的“形变度”为2:.如图3,正方形由16个边长为1的小正方形组成,形变后成为菱形,△AEF(A、E、F是格点)同时形变为△A′E′F′,若这个菱形的“形变度”k=,则S△A′E′F′=__
12、(4分)如图,在矩形中,沿着对角线翻折能与重合,且与交于点,若,则的面积为__________.
13、(4分)如图,矩形纸片ABCD中,,把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若,则BC的长度为_______cm.
三、解答题(本大题共5个小题,共48分)
14、(12分)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解甲、乙两家快递公司比较合适,甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)当x>1时,请分別直接写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)在(1)的条件下,小明选择哪家快递公司更省钱?
15、(8分)一个边数为的多边形中所有对角线的条数是边数为的多边形中所有对角线条数的6倍,求这两个多边形的边数.
16、(8分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下方,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).
(1)求线段CD的长;
(2)当矩形PQMN与线段CD有公共点时,求t的取值范围;
(3)当点P在线段AD上运动时,求S与t的函数关系式.
17、(10分)某工厂为了解甲、乙两个部门员工的生产技能情况,从甲、乙两个部门各随机抽取20名员工,进行生产技能测试,测试成绩(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40
(说明:成绩80分及以上为优秀,70-79分为良好,60-69分为合格,60分以下为不合格)
(1)请填完整表格:
(2)从样本数据可以推断出 部门员工的生产技能水平较高,请说明理由.(至少从两个不同的角度说明推断的合理性).
18、(10分)解方程
(1)+=3 (2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知∠BAC=120º,AB=AC,AC的垂直平分线交BC于点D,则∠ADB=_______;
20、(4分)如图,函数y=bx和y=ax+4的图象相交于点A(1,3),则不等式bx<ax+4的解集为________.
21、(4分)点A(2,1)在反比例函数y=的图象上,当1<x<4时,y的取值范围是 .
22、(4分)若式子+有意义,则x的取值范围是____.
23、(4分)如图,一只蚂蚁从棱长为1的正方体纸箱的A点沿纸箱表面爬到B点,那么它所爬行的最短路线的长是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)在进行二次根式运算时,我们有时会碰上如这样的式子,我们还可以将其进一步化简:以上这种化简过程叫做分母有理化.还可以尝试用以下方法化简:
(1)请用两种不同的方法化简;
(2)请任选一种方法化简:
25、(10分)如图,四边形为正方形.在边上取一点,连接,使.
(1)利用尺规作图(保留作图痕迹):分别以点、为圆心,长为半径作弧交正方形内部于点,连接并延长交边于点,则;
(2)在前面的条件下,取中点,过点的直线分别交边、于点、.
①当时,求证:;
②当时,延长,交于点,猜想与的数量关系,并说明理由.
26、(12分)平行四边形ABCD在平面直角坐标系中的位置如图所示,已知AB=8,AD=6,∠BAD=60°,点A的坐标为(-2,0).
求:(1)点C的坐标;
(2)直线AC与y轴的交点E的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由折叠的性质可得AD=AD'=AC,∠D=∠AD'E=90°,∠DAE=∠CAE,可求∠ACD=30°,由直角三角形的性质可求∠AED的度数.
【详解】
解:∵将△AED沿着AE翻折,点D刚好落在对角线AC的中点D′处,
∴AD=AD'=AC,∠D=∠AD'E=90°,∠DAE=∠CAE
∴∠ACD=30°,
∴∠DAC=60°,且∠DAE=∠CAE
∴∠DAE=∠CAE=30°,且∠D=90°
∴∠AED=60°
故选:B.
本题考查了翻折变换,矩形的性质,熟练运用折叠的性质是本题的关键.
2、C
【解析】
设2017年到2019年该地区居民年人均收入增长率为x,根据2017年和2019年该地区居民年人均收入,即可得出关于x的一元二次方程.
【详解】
解:设2017年到2019年该地区居民年人均收入增长率为x,
依题意,得:3800(1+x)2=5000,
故选:C
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
3、C
【解析】
分别利用平行四边形、矩形、菱形及正方形的判定方法对四个选项逐项判断即可.
【详解】
A. 利用平行四边形的判定定理可知两组对边分别相等的四边形是平行四边形正确;
B. 利用矩形的判定定理可知有一个角是直角的平行四边形是矩形正确;
C. 根据四条边相等的四边形是菱形可知本选项错误;
D. 根据正方形的判定定理可知对角线互相垂直的矩形是正方形正确,
故选C.
此题考查正方形的判定,平行四边形的判定,矩形的判定,解题关键在于掌握各性质定义.
4、D
【解析】
观察图象得到直线与x轴的交点坐标为(2,1),且图象经过第一、三象限, y随x的增大而增大,所以当x<2时,y<1.
【详解】
解:∵一次函数y=kx+b与x轴的交点坐标为(2,1),且图象经过第一、三象限,
∴y随x的增大而增大,
∴当x<2时,y<1.
故选:D.
本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠1)的图象为直线,当k>1,图象经过第一、三象限,y随x的增大而增大;当k<1,图象经过第二、四象限,y随x的增大而减小.
5、D
【解析】
点A的横坐标为4,将x=4代入y= x,得y=2.
∴点A的坐标为(4,2).
∵点A是直线y=x与双曲线y=(k>0)的交点,
∴k=4×2=8,即y=.
将y=8代入y=中,得x=1.
∴点C的坐标为(1,8).
如图,过点A作x轴的垂线,过点C作y轴的垂线,垂足分别为M,N,且AM,CN的反向延长线交于点D,得长方形DMON.
易得S长方形DMON=32,S△ONC=4,
S△CDA=9,S△OAM=4.
∴S△AOC=S长方形DMON-S△ONC-S△CDA-S△OAM=32-4-9-4=15.
6、C
【解析】
BC是斜边,则∠A=90°,利用三角形内角和定理即可求出∠C.
【详解】
∵BC是斜边
∴∠A=90°
∴∠C=180°-90°-40°=50°
故选C.
本题考查三角形内角和定理,根据BC是斜边得出∠A是解题的关键.
7、A
【解析】
试题分析:根据轴对称图形与中心对称图形的概念求解,解答轴对称图形问题的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;解答中心对称图形问题的关键是要寻找对称中心,旋转180度后与原图重合.
A、是轴对称图形,也是中心对称图形,故正确;
B、不是轴对称图形,也不是中心对称图形,故错误;
C、是轴对称图形,不是中心对称图形,故错误;
D、不是轴对称图形,也不是中心对称图形,故错误.
考点:1.中心对称图形;2.轴对称图形.
8、C
【解析】
如图,首先运用旋转变换的性质证明∠B'AH=30°,此为解决问题的关键性结论;运用直角三角形的边角关系求出B'H的长度,进而求出△AB'H的面积,即可解决问题.
【详解】
如图,由题意得:∠CAC'=15°,∴∠B'AH=45°﹣15°=30°,∴B'H==6,∴S△AB'H,∴S△AHC'=18﹣6.
故选C.
本题考查了旋转变换的性质、勾股定理、三角形的面积公式等几何知识点及其应用问题;牢固掌握旋转变换的性质、勾股定理、三角形的面积公式等几何知识点是灵活运用、解题的基础和关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、18
【解析】
连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=36°,可得∠E度数.
【详解】
解:连接AC,
∵四边形ABCD是矩形,
∴AD∥BE,AC=BD,且∠ADB=∠CAD=36°,
∴∠E=∠DAE,
又∵BD=CE,
∴CE=CA,
∴∠E=∠CAE,
∵∠CAD=∠CAE+∠DAE,
∴∠E+∠E=36°,
∴∠E=18°.
故答案为:18
考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.
10、1
【解析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m=5,n=-3,代入可得到m + n的值.
【详解】
解:∵点A(m,n),B(5,3)关于x轴对称,
∴m=5,n=-3,
即:m + n =1.
故答案为:1.
此题主要考查了关于x轴对称点的坐标特点,关键是掌握坐标变化规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;(1)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.
11、
【解析】
求出形变前正方形的面积,形变后菱形的面积,两面积之比=菱形的“形变度”,求△AEF的面积,根据两面积之比=菱形的“形变度”,即可解答.
【详解】
如图,
在图2中,形变前正方形的面积为:a2,形变后的菱形的面积为:
∴菱形形变前的面积与形变后的面积之比:
∵这个菱形的“形变度”为2:,
∴菱形形变前的面积与形变后的面积之比=这个菱形的“形变度”,
∵若这个菱形的“形变度”k=,
∴
即
∴S△A′E′F′=.
故答案为:.
考查菱形的性质,读懂题目中菱形的“形变度”的概念是解题的关键.
12、
【解析】
由矩形的性质及翻折变换先证AF=CF,再在Rt△CDF中利用勾股定理求出CF的长,可通过S△AFC=AF•CD求出△ACF的面积.
【详解】
∵四边形ABCD为矩形,
∴∠D=90°,AD∥BC,CD=AB=1,AD=BC=3,
∴∠FAC=∠ACB,
又∵∠B沿着对角线AC翻折能与∠E重合,
∴∠ACB=∠ACF,
∴∠FAC=∠ACF,
∴FA=FC,
在Rt△DFC中,
设FC=x,则DF=AD-AF=3-x,
∵DF2+CD2=CF2,
∴(3-x)2+12=x2,
解得,x=,
∴AF=,
∴S△AFC=AF•CD
=××1
=.
故答案是:.
考查了矩形的性质,轴对称称的性质,勾股定理,三角形的面积等,解题关键是要先求出AF的长,转化为求FC的长,在Rt△CDF中利用勾股定理求得.
13、1
【解析】
由折叠的性质可证AF=FC.在Rt△ADF中,由勾股定理求AD的长,然后根据矩形的性质求得AD=BC.
【详解】
解:由折叠的性质知,AE=AB=CD,CE=BC=AD,
∴△ADC≌△CEA,∠EAC=∠DCA,
∴CF=AF=cm,DF=CD-CF=AB-CF==,
在Rt△ADF中,由勾股定理得,
AD2=AF2-DF2,则AD=1cm.
∴BC= AD=1 cm.
故答案为:1.
本题考查了翻折变换的知识,其中利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②全等三角形的判定和性质,勾股定理求解.
三、解答题(本大题共5个小题,共48分)
14、 (1)y甲=15x+7,y乙=16x+3(2)当1<x<4时,选乙快递公司省钱;当x=4时,选甲、乙两家快递公司快递费一样多;当x>4时,选甲快递公司省钱
【解析】
(1) 根据甲、 乙公司的收费方式结合数量关系,可得、 (元) 与x ( 千克) 之间的函数关系式;
(2)当x>1时,分别求出<、=、
相关试卷
这是一份北京一零一中学2024-2025学年九上数学开学复习检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年黑龙江省佳木斯市数学九上开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年黑龙江省尚志市田家炳中学数学九上开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。