河北省石家庄市栾城县2024-2025学年数学九上开学统考试题【含答案】
展开
这是一份河北省石家庄市栾城县2024-2025学年数学九上开学统考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)正十边形的每一个内角的度数为( )
A.120°B.135°C.140°D.144°
2、(4分)矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,点D正好落在AB边上的F点.则AE的长是( )
A.3
B.4
C.5
D.6
3、(4分)如图,在中,度.以的三边为边分别向外作等边三角形,,,若,的面积分别是8和3,则的面积是( )
A.B.C.D.5
4、(4分)在四边形中,对角线,相交于点,,,添加下列条件,不能判定四边形是菱形的是( ).
A.B.C.D.
5、(4分)若解关于x的方程有增根,则m的值为( )
A.﹣5B.5C.﹣2D.任意实数
6、(4分)下列各组数中是勾股数的为( )
A.1、2、3B.4、5、6C.3、4、5D.7、8、9
7、(4分)下列图形既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
8、(4分)下列说法正确的是( )
A.平行四边形的对角线相等
B.一组对边平行,一组对边相等的四边形是平行四边形
C.对角线互相平分的四边形是平行四边形
D.有两对邻角互补的四边形是平行四边形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)点A(﹣3,0)关于y轴的对称点的坐标是__.
10、(4分)计算:.
11、(4分)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg
12、(4分)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC= .
13、(4分)已知:,则_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试. 现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.
项目选择统计图
训练后篮球定时定点投篮测试进球统计表
请你根据图表中的信息回答下列问题:
(1)选择长跑训练的人数占全班人数的百分比是___________,该班共有同学___________人;
(2)求训练后篮球定时定点投篮人均进球数;
(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%. 请求出参加训练之前的人均进球数.
15、(8分)如图,在□ABCD中,点E、F分别在AD、BC边上,且AE=CF,求证:BE//FD.
16、(8分)为进一步改善民生,增强广大人民群众的幸福感,自2016年以来,我县加大城市公园的建设,2016年县政府投入城市公园建设经费约2亿元到2018年投入城市公园建设经费约2.88亿元,假设这两年投入城市公园建设经费的年平均增长率相同.
(1)求这两年我县投入城市公园建设经费的年平均增长率;
(2)若我县城市公园建设经费的投入还将保持相同的年平均增长率,请你预算2019年我县城市公园建设经费约为多少亿元?
17、(10分)如图,点D是△ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点。
(1)求证:四边形EFGH是平行四边形;(2)已知AD=6,BD=4,CD=3,∠BDC=90°,求四边形EFGH的周长。
18、(10分)如图,直线y=kx+b经过点A(0,5),B(1,4).
(1)求直线AB的解析式;
(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式2x﹣4≥kx+b的解集.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在菱形ABCD中,两条对角线AC与BD的和是1.菱形的边AB=5,则菱形ABCD的面积是_____.
20、(4分)有一张一个角为30°,最小边长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是 .
21、(4分)小张将自己家里1到6月份的用电量统计并绘制成了如图所示的折线统计图,则小张家1到6月份这6个月用电量的众数与中位数的和是_____度.
22、(4分)如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.
23、(4分)如图,在四边形ABCD中,AB∥CD,AB=BC=BD=2,AD=1,则AC=__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A、B、C、D、E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:
(1)补全条形统计图;
(2)求这30名职工捐书本数的平均数、众数和中位数;
(3)估计该单位750名职工共捐书多少本?
25、(10分)如图,已知等腰Rt△ABC中,AB=AC,∠BAC=,点A、B分别在x轴和y轴上,点C的坐标为(6,2).
(1)如图1,求A点坐标;
(2)如图2,延长CA至点D,使得AD=AC,连接BD,线段BD交x轴于点E,问:在x轴上是否存在点M,使得△BDM的面积等于△ABO的面积,若存在,求点M的坐标;若不存在,请说明理由.
26、(12分)如图,△ABC在直角坐标系中.
(1)若把△ABC向上平移2个单位,再向左平移1个单位得到△A1B1C1,画出△A1B1C1,并写出点A1,B1,C1的坐标;
(2)求△ABC的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
∵一个正十边形的每个外角都相等,∴正十边形的一个外角为360÷10=36°.
∴每个内角的度数为180°–36°=144°;故选D.
2、A
【解析】
由矩形的性质和折叠的性质可得CF=DC=10,DE=EF,由勾股定理可求BF的长,即可得AF=4,在Rt△AEF中,由勾股定理即可求得AE的长.
【详解】
∵四边形ABCD是矩形,
∴AB=CD=10,BC=AD=8,∠A=∠D=∠B=90°,
∵折叠,
∴CD=CF=10,EF=DE,
在Rt△BCF中,BF==6,
∴AF=AB-BF=10-6=4,
在Rt△AEF中,AE2+AF2=EF2,
∴AE2+16=(8-AE)2,
∴AE=3,
故选A.
本题考查了翻折变换,矩形的性质,勾股定理,熟练掌握折叠的性质是本题的关键.
3、D
【解析】
先设AC=b,BC=a,AB=c,根据勾股定理有c2+b2=a2,再根据等式性质可得c2+b2=a2,再根据等边三角形的性质以及特殊三角函数值,易求得S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,从而可得S1+S2=S3,易求S1.
【详解】
解:如图,设等边三角形△A'BC,△AB'C,△ABC'的面积分别是S3,S2,S1,
设AC=b,BC=a,AB=c,
∵△ABC是直角三角形,且∠BAC=90度,
∴c2+b2=a2,
∴c2+b2=a2,
又∵S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,
∴S1+S2=S3,
∵S3=8,S2=3,
∴S1=S3−S2=8−3=5,
故选:D.
本题考查了勾股定理,等边三角形的性质、特殊三角函数值的应用.解题关键是根据等边三角形的性质求出每一个三角形的面积.
4、B
【解析】
由,,证出四边形是平行四边形,
A. ,根据邻边相等的平行四边形,可证四边形是菱形;
B. ,对角线相等的平行四边形是矩形,不能证四边形是菱形;
C. ,根据对角线互相垂直的平行四边形是菱形,可证四边形是菱形;
D. ,证,根据等角对等边可证,即可证得四边形是菱形.
【详解】
,,
四边形是平行四边形,
A. ,是菱形;
B. ,是矩形,不是菱形;
C. ,是菱形;
D. ,
是菱形;
故本题的答案是:B
本题考查了特殊四边形菱形的证明,平行四边形的证明,矩形的证明,注意对这些证明的理解,容易混淆,小心区别对比.
5、A
【解析】
增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可能值,让最简公分母(x-1))=0,得到x=1,然后代入化为整式方程的方程算出m的值
【详解】
方程两边都乘(x﹣1),
得x=3(x﹣1)﹣m,
∵原方程有增根,
∴最简公分母x﹣1=0,
解得x=1,
当x=1时,m=﹣1,故m的值是﹣1.
故选:A.
此题考查分式方程的增根,解题关键在于利用原方程有增根
6、C
【解析】
根据勾股定理的逆定理分别对各组数据进行检验即可.
【详解】
解:A.∵12+22=5≠32=9,∴不是勾股数,故A错误;
B.∵42+52=41≠62=36,∴不是勾股数,故B错误;
C.∵32+42=25=52=25,∴是勾股数,故C正确;
D.∵72+82=113≠92=81,∴不是勾股数,故D错误.
故选C.
本题比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可.
7、A
【解析】
根据轴对称图形与中心对称图形的概念依次对各项进行判断即可.
【详解】
A. 是轴对称图形,也是中心对称图形,故此选项正确;
B. 不是轴对称图形,是中心对称图形,故此选项错误;
C. 不是轴对称图形,也不是中心对称图形,故此选项错误;
D. 是轴对称图形,不是中心对称图形,故此选项错误;
故选:A.
本题考查中心对称图形与轴对称图形的识别.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
8、C
【解析】
由平行四边形的判定和性质,依次判断可求解.
【详解】
解:A、平行四边形的对角线互相平分,但不一定相等,故A选项不合题意;
B、一组对边平行,一组对边相等的四边形可能是等腰梯形,故B选项不合题意;
C、对角线互相平分的四边形是平行四边形,故C选项符合题意;
D、有两对邻角互补的四边形可能是等腰梯形,故D选项不合题意;
故选:C.
本题考查了平行四边形的判定和性质,熟练掌握相关性质定理是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(3,0)
【解析】
试题分析:因为点P(a,b)关于y轴的对称点的坐标是(-a,b),所以点A(﹣3,0)关于y轴的对称点的坐标是(3,0),故答案为(3,0)
考点:关于y轴对称的点的坐标.
10、
【解析】
11、20
【解析】
设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg
12、1+
【解析】
分析:首先根据三角形外角的性质可得∠B=∠BAD,根据等角对等边可得BD=AD=√55,然后利用勾股定理计算出CD长,进而可得BC长.
详解:∵∠B+∠DAB=∠ADC,∠ADC=2∠B,
∴∠B=∠BAD,
∴BD=AD=,
∵∠C=90°,
∴CD===1,
∴BC=+1.
故答案为.
点睛:此题主要考查了勾股定理,以及三角形外角的性质,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
13、
【解析】
由题意设,再代入代数式求值即可.
【详解】
由题意设,,则
考查了代数式求值,本题属于基础应用题,只需学生熟练掌握代数式求值的方法,即可完成.
三、解答题(本大题共5个小题,共48分)
14、(1)10%,40;(2)5;(3)参加训练前的人均进球数为4个.
【解析】
(1)根据选择长跑训练的人数等于1减去其他人数占的比例,根据训练篮球的人数=2+1+4+7+8+2=24人,求出全班人数;
(2)根据平均数的概念求进球平均数;
(3)设参加训练前的人均进球数为x个,得到方程:(1+25%)x=5,解出即可.
【详解】
解:(1)(1)选择长跑训练的人数占全班人数的百分比=1-60%-10%-20%=10%;
训练篮球的人数=2+1+4+7+8+2=24人,
∴全班人数=24÷60%=40;
(2)
(3)解:设参加训练前的人均进球数为个,由题意得:
解得:.
答:参加训练前的人均进球数为4个.
此题考查加权平均数,一元一次方程的应用,扇形统计图,解题关键在于看懂图中数据.
15、证明见解析.
【解析】
由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD//BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即得四边形BFDE是平行四边形.从而得出结论BE=DF,
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC,
∵AE=CF,
∴AD−AE=BC−CF,
∴ED=BF,
又∵AD//BC,
∴四边形BFDE是平行四边形,
∴BE=DF
此题考查了平行四边形的性质与判定,注意熟练掌握定理与性质是解决问题的关键.
16、(1)这两年我县投入城市公园建设经费的年平均增长率是0.2;(2)2019年我县城市公园建设经费约为3.456亿元.
【解析】
(1)设这两年我县投入城市公园建设经费的年平均增长率为x,根据题意,可以列出相应的一元二次方程,从而可求得年平均增长率;
(2)根据(1)中的结果可以计算出2019年我县城市公园建设经费约为多少亿元.
【详解】
(1)设这两年我县投入城市公园建设经费的年平均增长率为x,
2(1+x)2=2.88,
解得,x1=0.2,x2=﹣2.2(舍去),
答:这两年我县投入城市公园建设经费的年平均增长率是0.2;
(2)2.88(1+0.2)=3.456(亿元),
答:2019年我县城市公园建设经费约为3.456亿元.
本题考查了一元二次方程的应用---增长率问题;本题的关键是掌握增长率问题中的一般公式为a(1+x)n =b,其中n为共增长了几年,a为第一年的原始数据,b是增长后的数据,x是增长率.
17、(1)见解析;(2)周长为:11.
【解析】
(1)根据三角形的中位线的定理和平行四边形的判定即可解答;
(2)利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.
【详解】
(1)证明:∵点E,F 分别是AB,AC 的中点,
∴EF 是△ABC 的中位线,∴EF∥BC 且EF=BC;
又∵点H,G 分别是BD,CD 的中点,∴HG 是△BCD 的中位线,∴HG∥BC
且HG=BC;
∴EF∥HG 且EF=HG,∴四边形EFGH 是平行四边形.
(2)∵点E,H 分别是AB,BD 的中点,∴EH 是△ABD 的中位线,∴EH=AD=3;
∵∠BDC=90°,∴△BCD 是直角三角形;
在Rt△BCD 中,CD=3,BD=4,∴由勾股定理得:BC=5;
∵HG=BC,∴HG=;
由(1)知,四边形EFGH 是平行四边形,∴周长为2EH+2HG=11.
本题考查了三角形中位线定理, 勾股定理,掌握三角形中位线定理, 勾股定理是解决问题的关键.
18、(1)y=﹣x+5;(2)点C的坐标为(1,2);(1)x≥1.
【解析】
(1)利用待定系数法求一次函数解析式解答即可;
(2)联立两直线解析式,解方程组即可得到点C的坐标;
(1)根据图形,找出点C左边的部分的x的取值范围即可.
【详解】
(1)∵直线y=﹣kx+b经过点A(5,0)、B(1,4),
∴,
解方程组得,
∴直线AB的解析式为y=﹣x+5;
(2)∵直线y=2x﹣4与直线AB相交于点C,
∴解方程组,
解得,
∴点C的坐标为(1,2);
(1)由图可知,x≥1时,2x﹣4≥kx+b.
本题考查两条直线相交或平行问题,解题的关键是掌握一次函数与一元一次不等式和待定系数法求一次函数解析式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
根据菱形的对角线互相垂直,利用勾股定理列式求出AC•BD,再根利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.
【详解】
如图,
∵四边形ABCD是菱形,
∴OA=AC,OB=BD,AC⊥BD,
在Rt△AOB中,∠AOB=90°,
根据勾股定理,得:OA2+OB2=AB2,
即(AC+BD)2﹣AC•BD=AB2,
×12﹣AC•BD=52,
AC•BD=48,
故菱形ABCD的面积是48÷2=2.
故答案为:2.
本题考查了菱形的面积公式,菱形的对角线互相垂直平分线的性质,勾股定理的应用,比熟记性质是解题的关键.
20、或1.
【解析】
试题分析:此题主要考查了图形的剪拼,关键是根据画出图形,要考虑全面,不要漏解. 根据三角函数可以计算出BC=8,AC=4,再根据中位线的性质可得CD=AD=,CF=BF=4,DF=2,然后拼图,出现两种情况,一种是拼成一个矩形,另一种拼成一个平行四边形,进而算出周长即可.
解:由题意可得:AB=4,
∵∠C=30°,
∴BC=8,AC=4,
∵图中所示的中位线剪开,
∴CD=AD=2,CF=BF=4,DF=2,
如图1所示:拼成一个矩形,矩形周长为:2+2+4+2+2=8+4;
如图2所示,可以拼成一个平行四边形,周长为:4+4+4+4=1,
故答案为8+4或1.
考点:1.图形的剪拼;2.三角形中位线定理.
21、1
【解析】
根据折线统计图,可得1到6月份的用电量的众数与中位数,相加求和即可.
【详解】
解:根据1到6月份用电量的折线统计图,可得150出现的次数最多,为2次,故用电量的众数为150(度);
1到6月份用电量按大小排列为:250,225,150,150,128,125,50,故中位数为150(度),
∴众数与中位数的和是:150+150=1(度).
故答案为1.
本题主要考查了中位数以及众数的定义,解决问题的关键是掌握:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.解题时注意:一组数据中出现次数最多的数据叫做众数.
22、
【解析】
【分析】如图所示,过点A作AM⊥BC,垂足为M,先证明△ABE是等边三角形,从而求得BE=AB=2,继而求得AM长,再证明四边形AECF是平行四边形,继而根据平行四边形的面积公式进行计算即可求得.
【详解】如图所示,过点A作AM⊥BC,垂足为M,
∵四边形ABCD是平行四边形,
∴AD//BC,
∴∠B=180°-∠BAD=180°-120°=60°,
∠DAE=∠AEB,
∵AE平分∠BAD,∠BAD=120°,
∴∠DAE=60°,
∴∠AEB=60°,
∴△ABE是等边三角形,
∴BE=AB=2,
∴BM=1,AM=,
又∵CF//AE,∴四边形AECF是平行四边形,
∵CE=BC-BE=3-2=1,
∴S四边形AECF=CE•AM=,
故答案为:.
【点睛】本题考查了平行四边形的判定与性质、等边三角形的判定与性质、勾股定理等,正确添加辅助线、熟练应用相关的定理与性质是解题的关键.
23、
【解析】
以B为圆心,BA长为半径作圆,延长AB交⊙B于E,连接CE,由圆周角定理的推论得,进而CE=AD=1,由直径所对的圆周角是直角,有勾股定理即可求得AC的长.
【详解】
如图,以B为圆心,BA长为半径作圆,延长AB交⊙B于E,连接CE,
∵AB=BC=BD=2,
∴C,D在⊙B 上,
∵AB∥CD,
∴,
∴CE=AD,
∵AD=1,
∴CE=AD=1,AE=AB+BE=2AB=4,
∵AE是⊙B的直径,
∴∠ACE=90º,
∴AC==,
故答案为.
本题借助于圆的模型把三角形的问题转化为圆的性质的问题,再解题过程中需让学生体会这种转化的方法.
二、解答题(本大题共3个小题,共30分)
24、(1)补图见解析(2)6;6;6;(3)4500本.
【解析】
(1)根据题意列式计算得到D类书的人数,补全条形统计图即可;
(2)根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数;
(3)用捐款平均数乘以总人数即可.
【详解】
(1)捐D类书的人数为:30-4-6-9-3=8,
补图如图所示;
(2)众数为:6 中位数为:6
平均数为:=(4×4+5×6+6×9+7×8+8×3)=6;
(3)750×6=4500,
即该单位750名职工共捐书约4500本.
主要考查了中位数,众数,平均数的求法,条形统计图的画法,用样本估计总体的思想和计算方法;要求平均数只要求出数据之和再除以总个数即可;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
25、(1)A(2,0);(2)(0 ,0)(- ,0).
【解析】
(1)过C作CH⊥x轴于H,则CH=2,根据题意可证△ADB≌△CAH,所以OA=CH,又因点A在x轴上,所以点A的坐标为(2,0).
(2)根据题意先求出点D的坐标为(2,-2),再根据△BDM的面积=△BEM的面积+△DEM的面积=△ABO的面积,列出方程解出M点的坐标.
【详解】
(1)过C作CH⊥x轴于H,
则△ADB≌△CAH,
又C(6,2),
所以,OA=2,即A(2,0)
(2)如图2所示,设点M的坐标为(x,0),
∵AD=AC,
∴点A是CD的中点,
∵C(6,2),A(2,0)
∴D(-2,-2).
设直线BD的解析式为y=kx+b,则
解得:
∴直线BD的解析式为,
令y=0,解得x=.
∴E的坐标为(,0)
∵△BDM的面积=△BEM的面积+△DEM的面积=△ABO的面积
∴
解得:或x=0.
∴点M的坐标(0 ,0)或(- ,0)..
本题考查了等腰直角三角形的性质、全等三角形的判定和性质、平面直角坐标系中坐标轴的坐标特点、中点坐标公式、一次函数解析式及与坐标轴交点坐标的求法,数轴上两点之间的距离公式,三角形的面积公式等知识,综合性较强,能综合运用知识解题是解题的关键.
26、 (1)A1(-3,0),B1(2,3),C1(-1,4),图略 (2)S△ABC=1
【解析】
(1)根据平移的性质,结合已知点A,B,C的坐标,即可写出A1、B1、C1的坐标,(2)根据点的坐标的表示法即可写出各个顶点的坐标,根据S△ABC=S长方形ADEF﹣S△ABD﹣S△EBC﹣S△ACF,即可求得三角形的面积.
【详解】
(1)如图所示.根据题意得:A1、B1、C1的坐标分别是:A1(﹣3,0),B1(2,3),C1(﹣1,4);
(2)S△ABC=S长方形ADEF﹣S△ABD﹣S△EBC﹣S△ACF
=4×53×53×12×4
=204
=1.
本题考查了点的坐标的表示,以及图形的面积的计算,不规则图形的面积等于规则图形的面积的和或差.
题号
一
二
三
四
五
总分
得分
进球数(个)
8
7
6
5
4
3
人数
2
1
4
7
8
2
相关试卷
这是一份河北省广宗县2024-2025学年九上数学开学统考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河北省保定市安国市2024-2025学年数学九上开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年拉萨市九上数学开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。