河北省广宗县2024-2025学年九上数学开学统考试题【含答案】
展开
这是一份河北省广宗县2024-2025学年九上数学开学统考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下表是某公司员工月收入的资料:
能够反映该公司全体员工月收入水平的统计量是( )
A.平均数和众数B.平均数和中位数
C.中位数和众数D.平均数和方差
2、(4分)在 △ABC 中, AC 9 , BC 12 , AB 15 ,则 AB 边上的高是( )
A.B.C.D.
3、(4分)若关于x的方程的解为负数,则m的取值范围是( )
A.B.C.D.
4、(4分)下列命题:
①在函数:y=-1x-1;y=3x;y=;y=-;y=(x<0)中,y随x增大而减小的有3个函数;
②对角线互相垂直平分且相等的四边形是正方形;
③反比例函数图象是两条无限接近坐标轴的曲线,它只是中心对称图形;
④已知数据x1、x1、x3的方差为s1,则数据x1+1,x3+1,x3+1的方差为s3+1.
其中是真命题的个数是( )
A.1个B.1个C.3个D.4个
5、(4分)某校八年级(2)班第一组女生的体重(单位:):35,36,36,42,42,42,45,则这组数据的众数为( )
A.45B.42C.36D.35
6、(4分)一元二次方程 x2= x的根是( )
A.=0,=1B.=0,=-1C.==0D.==1
7、(4分)如图,菱形ABCD中,AB=4,E,F分别是AB、BC的中点,P是AC上一动点,则PF+PE的最小值是( )
A.3B.C.4D.
8、(4分)下面几个函数关系式中,成正比例函数关系的是 ( )
A.正方体的体积和棱长
B.正方形的周长和边长
C.菱形的面积一定,它的两条对角线长
D.圆的面积与它的半径
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一根竹子高10尺,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是______尺.
10、(4分)已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______.
11、(4分)在函数y=中,自变量x的取值范围是_________.
12、(4分)在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是______(填写所有正确结论的序号).
13、(4分)甲、乙两名同学的5次数学成绩情况统计结果如下表:
根据上表,甲、乙两人成绩发挥较为稳定的是______填:甲或乙
三、解答题(本大题共5个小题,共48分)
14、(12分)(感知)如图①在等边△ABC和等边△ADE中,连接BD,CE,易证:△ABD≌△ACE;
(探究)如图②△ABC与△ADE中,∠BAC=∠DAE,∠ABC=∠ADE,求证:△ABD∽△ACE;
(应用)如图③,点A的坐标为(0,6),AB=BO,∠ABO=120°,点C在x轴上运动,在坐标平面内作点D,使AD=CD,∠ADC=120°,连结OD,则OD的最小值为 .
15、(8分)八年级全体同学参加了学校捐款活动,随机抽取了部分同学捐款的情况统计图如图所示
(1)本次共抽查学生 人,并将条形统计图补充完整;
(2)捐款金额的众数是 ,中位数是 ;
(3)在八年级600名学生中,捐款20元及以上的学生估计有 人.
16、(8分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园(围墙最长可利用),现在已备足可以砌长的墙的材料,恰好用完,试求的长,使矩形花园的面积为.
17、(10分)已知城有肥料200吨,城有肥料300吨.现将这些肥料全部运往,两乡. 乡需要的肥料比乡少20吨.从城运往,两乡的费用分别为每吨20元和25元;从城运往,两乡的费用分别为每吨15元和24元.
(1)求,两乡各需肥料多少吨?
(2)设从城运往乡的肥料为吨,全部肥料运往,两乡的总运费为元,求与之间的函数关系式,并直接写出自变量的取值范围;
(3)因近期持续暴雨天气,为安全起见,从城到乡需要绕道运输,实际运费每吨增加了元(),其它路线运费不变.此时全部肥料运往,两乡所需最少费用为10520元,则的值为__ (直接写出结果).
18、(10分)如图所示,在中,,,,点从点出发沿方向以每秒2个单位长度的速度向点匀速运动,同时点从点出发沿方向以每秒1个单位长度的速度向点匀速运动,当其中一点到达终点时,另一个点也随之停止运动.设点、运动的时间是秒,过点作于点,连接、.
(1)求证:;
(2)四边形能够成为菱形吗?若能,求出的值;若不能,请说明理由;
(3)当________时,为直角三角形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)将矩形ABCD折叠,使得对角线的两个端点A.C重合,折痕所在直线交直线AB于点E,如果AB=4,BE=1,则BC的长为______.
20、(4分)如图,在四边形ABCD中,对角线AC、BD互相垂直平分,若使四边形ABCD是正方形,则需要再添加的一个条件为___________.(图形中不再添加辅助线,写出一个条件即可)
21、(4分)已知点和都在第三象限的角平分线上,则_______.
22、(4分)数据1、x、-1、2的平均数是,则这组数据的方差是_______.
23、(4分)若关于x的一元一次不等式组的的解集为,则a的取值范围是___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知,求代数式的值.
25、(10分)计算能力是数学的基本能力,为了进一步了解学生的计算情况,初2020级数学老师们对某次考试中第19题计算题的得分情况进行了调查,现分别从A、B两班随机各抽取10名学生的成绩如下:
A班10名学生的成绩绘成了条形统计图,如下图,
B班10名学生的成绩(单位:分)分别为:9,8,9,10,9,7,9,8,10,8
经过老师对所抽取学生成绩的整理与分析,得到了如下表数据:
根据以上信息,解答下列问题.
(1)补全条形统计图;
(2)直接写出表中a,b,c的值:a= ,b= ,c= ;
(3)根据以上数据,你认为A、B两个班哪个班计算题掌握得更好?请说明理由(写出其中两条即可): .
(4)若9分及9分以上为优秀,若A班共55人,则A班计算题优秀的大约有多少人?
26、(12分)若点,与点关于轴对称,则__.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
求出数据的众数和中位数,再与25名员工的收入进行比较即可.
【详解】
解:该公司员工月收入的众数为3300元,在25名员工中有13人这此数据之上,
所以众数能够反映该公司全体员工月收入水平;
因为公司共有员工1+1+1+3+6+1+11+1=25人,
所以该公司员工月收入的中位数为3400元;
由于在25名员工中在此数据及以上的有13人,
所以中位数也能够反映该公司全体员工月收入水平;
故选C.
此题考查了众数、中位数,用到的知识点是众数、中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,众数即出现次数最多的数据.
2、A
【解析】
首先由题目所给条件判断△ABC是直角三角形,再按照面积法求解即可.
【详解】
解:∵,,
∴.
∴△ABC是直角三角形且.
∴由直角三角形面积的计算方法,可知AB 边上的高是.
故选A.
本题考查了勾股定理的逆定理和用面积法求直角三角形斜边上的高的知识,属于基础题型.
3、B
【解析】
先把m当作已知条件求出x的值,再根据x的值是负数列出关于m的不等式,求出m的取值范围即可.
【详解】
解:∵1x-m=1+x,
∴x=,
∵关于x的方程1x-m=1+x的解是负数,
∴<0,
解得m<-1.
故选:B.
本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.
4、B
【解析】
解:在函数:y=-1x-1;y=3x;y=;y=-;y=(x<0)中,y随x增大而减小的有3个函数,所以①正确;
对角线互相垂直平分且相等的四边形是正方形,所以②正确;
反比例函数图象是两条无限接近坐标轴的曲线,它是中心对称图形,也是轴对称图形,所以③错误;
已知数据x1、x1、x3的方差为s1,则数据x1+1,x3+1,x3+1的方差也为s1,所以④错误.
故选B.
本题考查命题与定理.
5、B
【解析】
出现次数最多的数是1.故众数是1.
【详解】
解:出现次数最多的数是1.故众数是1.
故答案:B
注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.
6、A
【解析】
移项后用因式分解法求解.
【详解】
x2= x
x2-x=0,
x(x-1)=0,
x1=0或x2=1.
故选:A.
考查了因式分解法解一元二次方程,解一元二次方程常用的方法有:直接开平方法、配方法、公式法、因式分解法,要根据方程的特点灵活选用合适的方法.
7、C
【解析】
作点E关于AC的对称点E',连接E'F与AC交点为P点,此时EP+PF的值最小;易求E'是AD的中点,证得四边形ABF E'是平行四边形,所以E'F=AB=4,即PF+PE的最小值是4.
【详解】
作点E关于AC的对称点E',连接E'F,与AC交点为P点,此时EP+PF的值最小;
连接EF,
∵菱形ABCD,
∴AC⊥BD
∵E,F分别是边AB,BC的中点,
∴E'是AD的中点,
∴A E'=AD,BF=BC,E'E⊥EF,
∵菱形ABCD,
∴AD=BC,AD∥BC,
∴A E'=BF,A E'∥BF,
∴四边形ABF E'是平行四边形,
∴E'F=AB=4,
即PF+PE的最小值是4.
故选C.
本题考查的是轴对称-最短路线问题及菱形的性质,通过轴对称作点E关于AC的对称点是解题的关键.
8、B
【解析】
根据正比例函数的定义进行判断.
【详解】
解:A、设正方体的体积为V,棱长为a,则V=a3,不符合正比例函数的定义,故本选项错误;
B、设正方形的周长为C,边长为a,则C=4a,符合正比例函数的定义,故本选项正确;
C、设菱形面积为S,两条对角线长分别为m,n,则S=mn,不符合正比例函数的定义,故本选项错误;
D、设圆的面积为S,半径为r,则S=πr2,不符合正比例函数的定义,故本选项错误;
故选:B.
本题主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
设折断处离地面的高度是x尺,根据勾股定理即可列出方程进行求解.
【详解】
设折断处离地面的高度是x尺,根据勾股定理得x2+32=(10-x)2,
解得x=
故折断处离地面的高度是尺.
此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的应用.
10、±1
【解析】
试题分析:根据坐标与图形得到三角形OAB的两边分别为|a|与5,然后根据三角形面积公式有:,
解得a=1或a=-1,
即a的值为±1.
考点:1.三角形的面积;2.坐标与图形性质.
11、x≤1
【解析】
根据二次根式的性质列出不等式,求出不等式的取值范围即可.
【详解】
若使函数y=有意义,
∴1−x≥0,
即x≤1.
故答案为x≤1.
本题主要考查了函数自变量取值范围的知识点,注意:二次根式中的被开方数必须是非负数,否则二次根式无意义.
12、②③④.
【解析】解:①观察函数图象可知,当t=2时,两函数图象相交,∵C地位于A、B两地之间,∴交点代表了两车离C地的距离相等,并不是两车相遇,结论①错误;
②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5﹣1)=80(km/h),∵(240+200﹣60﹣170)÷(60+80)=1.5(h),∴乙车出发1.5h时,两车相距170km,结论②正确;
③∵(240+200﹣60)÷(60+80)=(h),∴乙车出发h时,两车相遇,结论③正确;
④∵80×(4﹣3.5)=40(km),∴甲车到达C地时,两车相距40km,结论④正确.
综上所述,正确的结论有:②③④.
故答案为:②③④.
点睛:本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.
13、甲
【解析】
根据方差的定义,方差越小数据越稳定.
【详解】
∵S甲2=4,S乙2=16,
∴S甲2=4<S乙2=16,
∴成绩稳定的是甲,
故答案为:甲.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
三、解答题(本大题共5个小题,共48分)
14、探究:见解析;应用:.
【解析】
探究:由△DAE∽△BAC,推出,可得,由此即可解决问题;
应用:当点D在AC的下方时,先判定△ABO∽△ADC,得出,再根据∠BAD=∠OAC,得出△ACO∽△ADB,进而得到∠ABD=∠AOC=90°,得到当OD⊥BE时,OD最小,最后过O作OF⊥BD于F,根据∠OBF=30°,求得OF=OB=,即OD最小值为;当点D在AC的上方时,作B关于y轴的对称点B',则同理可得OD最小值为.
【详解】
解:探究:如图②中,
∵∠BAC=∠DAE,∠ABC=∠ADE,
∴△DAE∽△BAC,∠DAB=∠EAC,
∴,
∴,
∴△ABD∽△ACE;
应用:①当点D在AC的下方时,如图③−1中,
作直线BD,由∠DAC=∠DCA=∠BAO=∠BOA=30°,可得△ABO∽△ADC,
∴,即,
又∵∠BAD=∠OAC,
∴△ACO∽△ADB,
∴∠ABD=∠AOC=90°,
∵当OD⊥BE时,OD最小,
过O作OF⊥BD于F,则△BOF为直角三角形,
∵A点的坐标是(0,6),AB=BO,∠ABO=120°,
∴易得OB=2,
∵∠ABO=120°,∠ABD=90°,
∴∠OBF=30°,
∴OF=OB=,
即OD最小值为;
当点D在AC的上方时,如图③−2中,
作B关于y轴的对称点B',作直线DB',则同理可得:△ACO∽△ADB',
∴∠AB'D=∠AOC=90°,
∴当OD⊥B'E时,OD最小,
过O作OF'⊥B'D于F',则△B'OF'为直角三角形,
∵A点的坐标是(0,6),AB'=B'O,∠AB'O=120°,
∴易得OB'=2,
∵∠AB'O=120°,∠AB'D=90°,
∴∠OB'F'=30°,
∴OF'=OB'=,
即OD最小值为.
故答案为:.
本题属于相似形综合题,考查了相似三角形的判定与性质、含30°角的直角三角形的性质的综合应用,解决问题的关键是作辅助线,利用垂线段最短进行判断分析.解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.
15、(1) ,图略;(2)10,12.5;(3)132.
【解析】
(1)由C组人数及其所占百分比可得总人数;用总人数减去A,C,D,E的人数,即为B捐款10元的人数;
(2)众数即为人数最多的捐款金额数,中位数即为按捐款金额从小到大排列最中间位置的捐款金额;
(3)利用样本估计总体思想求解可得.
【详解】
解:(1)本次共抽查学生(人),捐款10元的人数(人)补全条形统计图:
(2)由条形统计图可知捐款10元的人数最多,所以捐款金额的众数是10元;按捐款金额从小到大排列最中间位置的捐款金额为10和15元,所以中位数是元;
(3)(人),故捐款20元及以上的学生估计有132人.
本题考查了扇形统计图、条形统计图,观察统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小,条形统计图直接反映部分的具体数据.
16、的长为15米
【解析】
设AB=xm,列方程解答即可.
【详解】
解:设AB=xm,则BC=(50-2x)m,
根据题意可得,,
解得:,
当时,,
故(不合题意舍去),
答:的长为15米.
此题考查一元二次方程的实际应用,正确理解题意是列方程的关键.
17、(1)140 吨,160 吨;(1);(3)a=1
【解析】
(1)设C乡需肥料m吨,根据题意列方程得答案;
(1)根据:运费=运输吨数×运输费用,得一次函数解析式;
(3)利用一次函数的性质列方程解答即可.
【详解】
(1)设乡需要肥料吨,列方程得
解得 ,
即两乡分别需肥料 140 吨,160 吨;
(1),
取值范围为:;
(3)根据题意得,(-4+a)x+11000=10510,
由(1)可知k=-4<0,w随x的增大而减小,所以x=140时,w有最小值,
所以(-4+a)×140+11000=10510,
解得a=1.
本题考查一次函数的应用,属于一般的应用题,解答本题的关键是根据题意得出y与x的函数关系式,另外同学们要掌握运用函数的增减性来判断函数的最值问题.
18、(1)详见解析;(2)能;(3)2或秒
【解析】
(1)在中,,,由已知条件求证;
(2)求得四边形为平行四边形,若使平行四边形为菱形则需要满足的条件及求得;
(3)分三种情况:①时,四边形为矩形.在直角三角形中求得即求得.②时,由(2)知,则得,求得.③时,此种情况不存在.
【详解】
(1)在中,
∴
又∵
∴
(2)能. 理由如下:
∵,
∴
又∵
∴四边形为平行四边形
在中,
∴
又∵
∴
∴,
∴
当时,为菱形
∴AD=
∴,即秒时,四边形为菱形
(3)①时,四边形为矩形.
在中,,
.
即,.
②时,由(2)四边形为平行四边形知,
.
,
.
则有,.
③当时,此种情况不存在.
综上所述,当秒或秒时,为直角三角形.
本题考查了菱形的性质,考查了菱形是平行四边形,考查了菱形的判定定理,以及菱形与矩形之间的联系.难度适宜,计算繁琐.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、或2
【解析】
分类讨论:当点E在线段AB上,连结CE,根据折叠的性质得到AE=CE=3,然后在Rt△BCE中,利用勾股定理计算BC;当点E在线段AB的延长线上,连结CE,根据折叠的性质得AE=CE=5,在Rt△BCE中,根据勾股定理计算BC.
【详解】
当点E在线段AB上,如图1,连结CE,
∵AB=4,BE=1,
∴AE=3,
∵将矩形ABCD折叠,使得对角线的两个端点A. C重合,
∴AE=CE=3,
在Rt△BCE中,BC=;
当点E在线段AB的延长线上,如图2,连结CE,
∵AB=4,BE=1,
∴AE=5,
∵将矩形ABCD折叠,使得对角线的两个端点A. C重合,
∴AE=CE=5,
在Rt△BCE中,BC=,
∴BC的长为或.
本题考查折叠问题,分情况解答是解题关键.
20、AC=BD 答案不唯一
【解析】
由四边形ABCD的对角线互相垂直平分,可得四边形ABCD是菱形,再添加∠DAB=90°,即可得出四边形ABCD是正方形.
【详解】
解:可添加AC=BD,
理由如下:
∵四边形ABCD的对角线互相平分,
∴四边形ABCD是平行四边形,
∵AC⊥BD, ∴平行四边形ABCD是菱形,
∵∠DAB=90°,
∴四边形ABCD是正方形.
故答案为:AC=BD(答案不唯一).
本题是考查正方形的判定,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.
21、-6
【解析】
本题应先根据题意得出第三象限的角平分线的函数表达式,在根据、的坐标得出、的值,代入原式即可.
【详解】
解:点A(-2,x)和都在第三象限的角平分线上,
,,
.
故答案为:.
本题考查了第三象限的角平分线上的点的坐标特点及代数式求值,注意第三象限的角平分线上的点的横纵坐标相等.
22、
【解析】
先由平均数的公式计算出x的值,再根据方差的公式计算.
【详解】
解:∵
∴s2=.
故答案为:.
本题考查了方差的定义与平均数的定义,熟练掌握概念是解题的关键.
23、.
【解析】
不等式待定系数的取值范围就是已知不等式或不等式组的解集或特殊解,确定不等式中未知数的系数的取值范围.
【详解】
由得
因为解集为
所以
故答案为:
考核知识点:不等式组解集.会解不等式组是关键.
二、解答题(本大题共3个小题,共30分)
24、22
【解析】
根据多项式除以单项式和积的乘方可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.
【详解】
解:
,
当时,原式.
本题考查整式的混合运算-化简求值,解答本题的关键是明确整式化简求值的方法.
25、(1)见解析;(2)8.7,8, 9;(3)B班计算题掌握的更好,理由见详解;(4)A班计算题优秀的大约有22人.
【解析】
(1)先根据A班的总人数求出成绩为 10分的人数,然后即可补全条形统计图 ;
(2)利用平均数的公式和中位数,众数的概念求解即可;
(3)通过对比两班的平均数,中位数,众数,极差和方差即可得出答案;
(4)用总人数55乘以优秀人数所占的百分比即可得出答案.
【详解】
(1)成绩为10分的人数=10﹣1﹣2﹣3﹣1=3,
补全条形统计图如图所示,
(2)a=(9+8+9+10+9+7+9+8+10+8)=8.7;
中位数是将A班的10个成绩按照从小到大的顺序排列之后处于中间位置的数,此时第5个数和第6个数都是8,所以 ;
众数为B班成绩中出现次数最多的数,可以看出9出现了4次,次数最多,所以c=9;
(3)B班学生计算题掌握得更好,理由:
B班的平均分高于A班,B班的中位数高于A班;
(4)55×=22人,
答:A班计算题优秀的大约有22人.
本题主要考查数据的分析与整理,掌握平均数,中位数,众数的求法是解题的关键.
26、
【解析】
直接利用关于x轴对称点的性质得出a的值进而得出答案.
【详解】
解:点,与点关于轴对称,
.
故答案为:.
此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
月收入/元
45000
18000
10000
5500
5000
3400
3300
1000
人数
1
1
1
3
6
1
11
1
平均分
方差
标准差
甲
80
4
2
乙
80
16
4
A班
B班
平均数
8.3
a
中位数
b
9
众数
8或10
c
极差
4
3
方差
1.81
0.81
相关试卷
这是一份河北省保定市安国市2024-2025学年数学九上开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年浙江杭州上城区数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年陕西师大附中数学九上开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。