河北省唐山市友谊中学2025届数学九上开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平行四边形ABCD中,BE=2,AD=8,DE平分∠ADC,则平行四边形的周长为( )
A.14B.24C.20D.28
2、(4分)下列等式一定成立的是( )
A.B.C.D.
3、(4分)下列说法错误的是( )
A.“买一张彩票中大奖”是随机事件
B.不可能事件和必然事件都是确定事件
C.“穿十条马路连遇十次红灯”是不可能事件
D.“太阳东升西落”是必然事件
4、(4分)在平面直角坐标系中,将正比例函数(>0)的图象向上平移一个单位长度,那么平移后的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
5、(4分)方程x2-2x-5=0的左边配成一个完全平方后,所得的方程是()
A.B.
C.D.
6、(4分)下表是某校名男子足球队的年龄分布:
该校男子足球队队员的平均年龄为( )
A.B.C.D.
7、(4分)下列选项中,可以用来证明命题“若a²>1,则a>1”是假命题的反例是( )
A.a=-2.B.a==-1C.a=1D.a=2
8、(4分)若分式运算结果为,则在“□”中添加的运算符号为( )
A.+B.—C.—或÷D.+或×
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)关于x的一元一次不等式组中两个不等式的解集在同一数轴上的表示如图所示,则m的值是_______.
10、(4分)已知一次函数y=kx+3k+5的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为_____
11、(4分)如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为_____________.
12、(4分)已知,是二元一次方程组的解,则代数式的值为_____.
13、(4分)(2016浙江省衢州市)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,点C、D是线段AB同侧两点,且AC=BD,∠CAB=∠DBA,连接BC,AD交于点 E.
(1)求证:AE=BE;
(2)如图2,△ABF与△ABD关于直线AB对称,连接EF.
①判断四边形ACBF的形状,并说明理由;
②若∠DAB=30°,AE=5,DE=3,求线段EF的长.
15、(8分)如图1,是的边上的中线.
(1)①用尺规完成作图:延长到点,使,连接;
② 若,求的取值范围;
(2)如图2,当时,求证:.
16、(8分)如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.
(1)分别求出这两个函数的解析式;
(2)求的面积;
(3)点在轴上,且是等腰三角形,请直接写出点的坐标.
17、(10分)如图,已知是一次函数和反比例函数的图象的两个交点.
(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.
18、(10分)如图,在矩形中;点为坐标原点,点,点、在坐标轴上,点在边上,直线交轴于点.对于坐标平面内的直线,先将该直线向右平移个单位长度,再向下平移个单位长度,这种直线运动称为直线的斜平移.现将直线经过次斜平移,得到直线.
(备用图)
(1)求直线与两坐标轴围成的面积;
(2)求直线与的交点坐标;
(3)在第一象限内,在直线上是否存在一点,使得是等腰直角三角形?若存在,请直接写出点的坐标,若不存在,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若直角三角形的两边分别为1分米和2分米,则斜边上的中线长为_________.
20、(4分)关于x的分式方程有增根,则a=_____.
21、(4分)把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率都是0.125,那么第8组的频率是______.
22、(4分)已知反比例函数的图象上两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是 _______________
23、(4分)如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在直角坐标系中,,,是线段上靠近点的三等分点.
(1)求点的坐标;
(2)若点是轴上的一动点,连接、,当的值最小时,求出的坐标及的最小值;
(3)如图2,过点作,交于点,再将绕点作顺时针方向旋转,旋转角度为,记旋转中的三角形为,在旋转过程中,直线与直线的交点为,直线与直线交于点,当为等腰三角形时,请直接写出的值.
25、(10分)因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.
(1)求出2018至2020年五一长假期间游客人次的年平均增长率;
(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?
26、(12分)如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE
(1)求证:△BEC≌△DFA;
(2)求证:四边形AECF是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD的周长.
【详解】
解:∵DE平分∠ADC,
∴∠ADE=∠CDE,
∵四边形ABCD是平行四边形,
∴AD∥BC,BC=AD=8,AB=CD,
∴∠ADE=∠CED,
∴∠CDE=∠CED,
∴CE=CD,
∵AD=8,BE=2,
∴CE=BC﹣BE=8﹣2=6,
∴CD=AB=6,
∴▱ABCD的周长=6+6+8+8=1.
故选D.
本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,熟练掌握平行四边形的性质,证明CE=CD是解题的关键.
2、B
【解析】
A.,则原计算错误;B.,正确;C.,则原计算错误;D.,则原计算错误,故选B.
3、C
【解析】
根据随机事件和确定事件以及不可能事件和必然事件的概念即可解答.
【详解】
A、“买一张彩票中大奖”是随机事件,正确,不合题意;
B、不可能事件和必然事件都是确定事件,正确,不合题意;
C、“穿十条马路连遇十次红灯”是不可能事件,错误,符合题意;
D、太阳东升西落”是必然事件,正确,不合题意.
故选:C.
本题考查了随机事件,确定事件,不可能事件,必然事件的概念,正确理解概念是解题的关键.
4、D
【解析】
试题分析:将正比例函数y=kx(k>0)的图象向上平移一个单位得到y=kx+1(k>0),
∵k>0,b=1>0,
∴图象经过第一、二、三象限,不经过第四象限.
故选D.
考点:一次函数图象与几何变换.
5、B
【解析】
把常数项-5移项后,应该在左右两边同时加上一次项系数-2的一半的平方.
【详解】
解:把方程x2-2x-5=0的常数项移到等号的右边,得到x2-2x=5,
方程两边同时加上一次项系数一半的平方,得到x2-2x+(-1)2=5+(-1)2,
配方得(x-1)2=1.
故选:B.
本题考查配方法解一元二次方程.配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
6、C
【解析】
根据加权平均数的计算公式进行计算即可.
【详解】
该校男子足球队队员的平均年龄为 =15(岁),
故选:C.
此题考查加权平均数,解题关键在于掌握运算公式.
7、A
【解析】
根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题:
用来证明命题“若a2>2,则a>2”是假命题的反例可以是:a=-2.因为a=-2时,a2>2,但
a<2.故选A
8、C
【解析】
依次计算+、-、×、÷,再进行判断.
【详解】
当□为“-”时,;
当□为“+”时,;
当□为“×”时,;
当□为“÷”时,;
所以结果为x的有—或÷.
故选:C.
考查了分式的加、减、乘、除运算,解题关键是熟记其运算法则.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、m=1
【解析】
解不等式,表达出解集,根据数轴得出即可.
【详解】
解:不等式,
解不等式①得:
解不等式②得:,
由数轴可知,,解得m=1,
故答案为:m=1.
本题考查了根据不等式的解集求不等式中的参数问题,解题的关键是正确解出不等式组,根据解集表达出含参数的方程.
10、-2
【解析】
由一次函数图象与系数的关系可得出关于k的一元一次不等式组,解不等式组即可得出结论.
【详解】
由已知得:,
解得:-<k<2.
∵k为整数,
∴k=-2.
故答案为:-2.
本题考查了一次函数图象与系数的关系,解题的关键是得出关于k的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据一次函数图象与系数的关系找出关于系数的不等式(或不等式组)是关键.
11、 (2,1)
【解析】
【分析】直接运用线段中点坐标的求法,易求N的坐标.
【详解】点N的坐标是:(),即(2,1).
故答案为:(2,1)
【点睛】本题考核知识点:平面直角坐标系中求线段的中点. 解题关键点:理解线段中点的坐标求法.
12、1
【解析】
依据平方差公式求解即可.
【详解】
,,
.
故答案为:1.
本题主要考查的是二元一次方程组的解和平方差公式,发现所求代数式与已知方程组之间的关系是解题的关键.
13、4或﹣1.
【解析】
根据题意画图如下:
以O,A,B,C为顶点的四边形是平行四边形,则C(4,1)或(﹣1,1),则x=4或﹣1;故答案为4或﹣1.
三、解答题(本大题共5个小题,共48分)
14、 (1)证明见解析;(2)①四边形ACBF为平行四边形,理由见解析;②EF=1.
【解析】
(1)利用SAS证△ABC≌△BAD可得.
(2)①根据题意知:AC=BD=BF,并由内错角相等可得AC∥BF,所以由一组对边平行且相等的四边形是平行四边形,可得结论;
②如图2,作辅助线,证明△ADF是等边三角形,得AD=AE+DE=3+5=8,根据等腰三角形三线合一得AM=DM=4,最后利用勾股定理可得FM和EF的长.
【详解】
(1)证明:在△ABC和△BAD中,
∵,
∴△ABC≌△BAD(SAS),
∴∠CBA=∠DAB,
∴AE=BE;
(2)解:①四边形ACBF为平行四边形;
理由是:由对称得:△DAB≌△FAB,
∴∠ABD=∠ABF=∠CAB,BD=BF,
∴AC∥BF,
∵AC=BD=BF,
∴四边形ACBF为平行四边形;
②如图2,过F作FM⊥AD于,连接DF,
∵△DAB≌△FAB,
∴∠FAB=∠DAB=30°,AD=AF,
∴△ADF是等边三角形,
∴AD=AE+DE=3+5=8,
∵FM⊥AD,
∴AM=DM=4,
∵DE=3,
∴ME=1,
Rt△AFM中,由勾股定理得:FM===4,
∴EF==1.
本题是三角形的综合题,考查了全等三角形的判定的性质、等边三角形的性质和判定,勾股定理,本题中最后一问,有难度,恰当地作辅助线是解题的关键.
15、(1)①详见解析;②1<<5;(2)详见解析
【解析】
(1)①首先利用尺规作图,使得DE=AD,在连接CE,②首先利用≌可得AB=CE,在中,确定AE的范围,再根据AE=2AD,来确定AD的范围.
(2)首先延长延长到点,使,连接和BE,结合,可证四边形是平行四边形,再根据,可得四边形是矩形,因此可证明.
【详解】
(1)①用尺规完成作图:延长到点,使,连接;
②∵,,
∴≌
∴
∴6-4<<6+4,即2<<10
又∵
∴1<<5
(2)延长到点,使,连接
∵
∴四边形是平行四边形
∵
∴四边形是矩形
∴
∴.
本题主要考查直角三角形斜边中线是斜边的一半,关键在于构造矩形,利用矩形的对角线相等.
16、(1);;(2)10;(3)或或或
【解析】
(1)根据点A坐标,可以求出正比例函数解析式,再求出点B坐标即可求出一次函数解析式.
(2)如图1中,过A作AD⊥y轴于D,求出AD即可解决问题.
(3)分三种情形讨论即可①OA=OP,②AO=AP,③PA=PO.
【详解】
解:(1)正比例函数的图象经过点,
,
,
正比例函数解析式为
如图1中,过作轴于,
在中,,
解得
一次函数解析式为
(2)如图1中,过作轴于,
(3))如图2中,当OP=OA时,P(−5,0),P (5,0),
当AO=AP时,P (8,0),
当PA=PO时,线段OA的垂直平分线为y=− ,
∴P,
∴满足条件的点P的坐标或或或
此题考查一次函数综合题,解题关键在于作辅助线.
17、(1)反比例函数解析式为,一函数解析式为;(2).
【解析】
(1)根据是一次函数与反比例函数的图像的两个交点,可以求得m的值,进而求得n的值,即可解答本题;
(2)根据函数图像和(1)中一次函数的解析式可以求得点C的坐标,从而根据可以求得的面积.
【详解】
解:(1)是一次函数的图像与反比例函数的图像的两个交点,得,
,
,得,
∴点,
,解得,
∴一函数解析式为,
即反比例函数解析式为,一函数解析式为;
(2)设直线与y轴的交点为C,当时,,
∴点C的坐标是,
∵点,点,
.
本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
18、(1);(2)直线与的交点坐标;(3)存在点的坐标:或或.
【解析】
1)直线与两坐标轴围成的面积,即可求解;
(2)将直线经过2次斜平移,得到直线,即可求解;
(3)分为直角、为直角、为直角三种情况,由等腰直角三角形构造K字形全等,由坐标建立方程分别求解即可.
【详解】
解:(1)矩形,,
,
直线交轴于点,
把代入中,得
,解得,
直线,
当,,
;
(2)将直线经过次斜平移,得到直线
直线
直线
当,
∴直线与的交点坐标;
(3)①当为直角时,如图1所示:在第一象限内,在直线上不存在点;
②当为直角时,,
过点作轴的平行线分别交、于点、,如图(3)
,
设点,点,
,,
,,,
,
,即:,
解得:或,
故点,或,,
③当为直角时,如图4所示:
,
过Q点作FQ垂直于y轴垂足为F,过M点作MG垂直FQ垂足为G,
同理可得:FQ=MG,AF=DG,
设Q点坐标为(4,n),0<n<3,则AF=DG=3-n,FQ=MG=4
则M点坐标为(7-n,4+n),
代入,得,
解得:
故点;
综上所述:点的坐标:或或
本题考查的是二次函数综合运用,涉及到等腰直角三角形的性质、图形的平移、面积的计算等,在坐标系中求解等腰直角三角形问题时构造K字型全等是解题关键.其中(3),要注意分类求解,避免遗漏.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1分米或分米.
【解析】
分2是斜边时和2是直角边时,利用勾股定理列式求出斜边,然后根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
2是斜边时,此直角三角形斜边上的中线长=×2=1分米,
2是直角边时,斜边=,
此直角三角形斜边上的中线长=×分米,
综上所述,此直角三角形斜边上的中线长为1分米或分米.
故答案为1分米或分米.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,难点在于分情况讨论.
20、a=-1
【解析】
根据分式方程的解法求出方程的解,然后根据方程有增根,则x=-5,从而得出a的值.
【详解】
去分母可得:1+a=x+5, 解得:x=a-2, ∵分式方程有增根, ∴x=-5,即a-2=-5,
解得:a=-1.
本题主要考查的是分式方程的解得情况,属于中等难度的题型.分式方程有增根是因为整式方程的解会使得分式的分母为零.
21、0.1
【解析】
利用频率与频数的关系得出第1组到第4组的频率,进而得出第8组的频率.
【详解】
解:∵把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,
∴第1组到第4组的频率是:(5+7+11+13)0.5625
∵第5组到第7组的频率是0.125,
第8组的频率是:1- 0.5625-0.125= 0.1
故答案为: 0.1.
此题主要考查了频数与频率,正确求出第5组到第7组的频数是解题关键.
22、m<
【解析】
当x1<0<x2时,有y1<y2根据两种图象特点可知,此时k>0,所以1-2m>0,解不等式得m<1/2 .
故答案为m<1/2 .
23、1
【解析】
分析:由于AF∥BC,从而易证△AEF≌△DEC(AAS),所以AF=CD,从而可证四边形AFBD是平行四边形,所以S四边形AFBD=2S△ABD,又因为BD=DC,所以S△ABC=2S△ABD,所以S四边形AFBD=S△ABC,从而求出答案.
详解:∵AF∥BC,
∴∠AFC=∠FCD,
在△AEF与△DEC中,
∴△AEF≌△DEC(AAS).
∴AF=DC,
∵BD=DC,
∴AF=BD,
∴四边形AFBD是平行四边形,
∴S四边形AFBD=2S△ABD,
又∵BD=DC,
∴S△ABC=2S△ABD,
∴S四边形AFBD=S△ABC,
∵∠BAC=90°,AB=4,AC=6,
∴S△ABC=AB•AC=×4×6=1,
∴S四边形AFBD=1.
故答案为1
点睛:本题考查平行四边形的性质与判定,涉及全等三角形的判定与性质,平行四边形的判定与性质,勾股定理等知识,综合程度较高.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)最小值,M;(3)、、、
【解析】
(1)过点作轴于点,证得,然后由相似三角形的性质求得,从而求得GB,HG的长度,使问题得解;
(2)作点关于轴的对称点,连接交轴于点,此时的值最小即的长度,根据勾股定理求长度,然后利用待定系数法求直线的函数解析式,从而求与y轴交点坐标,使问题得解;
(3)依据△OST为等腰三角形,分4种情况画出图形,即可得到旋转角的度数.
【详解】
解:(1)如图,过点作轴于点.
因为轴
∴HG∥OA
∴,
又∵是线段上靠近点的三等分点
∴,
∵,,
∴,
∴
∴
(2)如图,作点关于轴的对称点,连接交轴于点.
则为,
此时
∴的最小值为;
设直线:,把,B(3,0)代入得:
,解得:
∴直线为
当时,
∴为
(3)如图,当OT=OS时,α=75°-30°=45°;
如图,当OT=TS时,α=90°;
如图,当OT=OS时,α=90°+60°-15°=135°;
如图,当ST=OS时,α=180°;
综上所述,α的值为45°,90°,135°,180°.
本题考查几何变换综合题、平行线分线段成比例定理、轴对称最短问题、勾股定理、等腰三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,学会用分类讨论的思想思考问题.
25、 (1)年平均增长率为20%;(2)每碗售价定为20元时,每天利润为6300元.
【解析】
(1)根据题意设平均增长率为未知数x,再根据题意建立方程式求解.(2)根据题意设每碗售价为未知数y,再根据题意建立方程式求解.
【详解】
(1)设平均增长率为,则
解得: (舍)·
答:年平均增长率为20%
(2)设每碗售价定为元时,每天利润为6300元
[300+30(25-y)]=6300·
解得: ·
∵每碗售价不超过20元,所以.
本题考查了在实际生活中对方程式的建立及求解,熟练掌握方程式的实际运用是本题解题关键.
26、(1)证明见解析,(2)证明见解析
【解析】
(1)根据E、F分别是边AB、CD的中点,可得出BE=DF,继而利用SAS可判断△BEC≌△DFA.
(2)由(1)的结论,可得CE=AF,继而可判断四边形AECF是平行四边形.
【详解】
证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC.
又∵E、F分别是边AB、CD的中点,∴BE=DF.
∵在△BEC和△DFA中,,
∴△BEC≌△DFA(SAS).
(2)由(1)△BEC≌△DFA,
∴CE=AF,
∵E、F分别是边AB、CD的中点,
∴AE=CF
∴四边形AECF是平行四边形.
本题考查三角形全等的证明,矩形的性质和平行四边形的判定.
题号
一
二
三
四
五
总分
得分
批阅人
年龄(岁)
频数
2025届唐山市林西中学数学九上开学统考模拟试题【含答案】: 这是一份2025届唐山市林西中学数学九上开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届河北省邢台市第八中学九上数学开学统考模拟试题【含答案】: 这是一份2025届河北省邢台市第八中学九上数学开学统考模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届河北省唐山市名校数学九上开学统考试题【含答案】: 这是一份2025届河北省唐山市名校数学九上开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。