2024-2025学年拉萨市九上数学开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若是关于,的二元一次方程,则( )
A.,B.,C.,D.,
2、(4分)如图,把绕着点逆时针旋转得到,,则的度数为( )
A.B.C.D.
3、(4分)一个多边形的内角和是7200,则这个多边形的边数是( )
A.2B.4C.6D.8
4、(4分)下列命题中是真命题的是( )
A.若a>b,则3﹣a>3﹣b
B.如果ab=0,那么a=0,b=0
C.一组对边相等,另一组对边平行的四边形是平行四边形
D.有两个角为60°的三角形是等边三角形
5、(4分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:
该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )
A.平均数B.方差C.中位数D.众数
6、(4分)宇宙船使用的陀螺仪直径要求误差不能超过0.00000012米.用科学记数法表示为( )
A.1.2×10﹣7米B.1.2×107米C.1.2×10﹣6米D.1.2×106米
7、(4分)龙华地铁4号线北延计划如期开工,由清湖站开始,到达观澜的牛湖站,长约10.770公里,其中需修建的高架线长1700m.在修建完400m后,为了更快更好服务市民,采用新技术,工效比原来提升了25%.结果比原计划提前4天完成高架线的修建任务.设原计划每天修建xm,依题意列方程得( )
A.B.
C.D.
8、(4分)菱形具有而矩形不一定具有的性质是( )
A.对角相等B.四条边都相等
C.邻角互补D.对角线互相平分
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)函数的自变量的取值范围是______.
10、(4分)如图,已知点是双曲线在第一象限上的一动点,连接,以为一边作等腰直角三角形(),点在第四象限,随着点的运动,点的位置也不断的变化,但始终在某个函数图像上运动,则这个函数表达式为______.
11、(4分)若关于的两个方程与有一个解相同,则__________.
12、(4分)如图,在平行四边形ABCD中,EF是△BCD的中位线,且EF=4,则AD=___.
13、(4分)使为整数的的值可以是________(只需填一个).
三、解答题(本大题共5个小题,共48分)
14、(12分)解方程与不等式组
(1)解方程:
(2)解不等式组
15、(8分)某校在一次广播操比赛中,初二 (1)班、初二(2)班、初二(3)班的各项得分如下:
(1)填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是________;在动作整齐方面三个班得分的众数是________;在动作准确方面最有优势的是________班.
(2)如果服装统一、动作整齐、动作准确三个方面的重要性之比为,那么这三个班的排名顺序怎样?为什么?
(3)在(2)的条件下,你对三个班级中排名最靠后的班级有何建议?
16、(8分)函数 y=(m-2)x+m2-4 (m为常数).
(1)当m取何值时, y是x的正比例函数?
(2) 当m取何值时, y是x的一次函数?
17、(10分)如图,是规格为8×8的正方形网格,请在所给网格中按下列要求操作:
(1)在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);
(2)在(1)的前提下,在第二象限内的格点上找一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点的坐标是;
(3)求((2)中△ABC的周长(结果保留根号);
(4)画出((2)中△ABC关于y轴对称的△A'B'C'.
18、(10分)如图,在Rt△ABC中,∠B=90°,∠C=30°,AC=48,点D从点C出发沿CA方向以每秒4个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒2个单位长的速度向点B匀速运动,当其中一个点到达终点,另一个点也随之停止运动,设点D、E运动的时间是t秒(t>0),过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)当四边形BFDE是矩形时,求t的值;
(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.×
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=_____°.
20、(4分)若的三边长分别是6、8、10,则最长边上的中线长为______.
21、(4分).在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是____________.
22、(4分)2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是 .
23、(4分)已知一元二次方程:2x2+5x+1=0的两个根分别是x1、x2 , 则=________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,直线: 分别与x轴、y轴交于点B、C,且与直线:交于点A.
分别求出点A、B、C的坐标;
直接写出关于x的不等式的解集;
若D是线段OA上的点,且的面积为12,求直线CD的函数表达式.
25、(10分)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC,
(1)求证:△ABE≌△ACF;
(2)若∠BAE=30°,则∠ADC= °.
26、(12分)如图,在△ABC中,AC=BC,∠C=36°,AD平分∠BAC交BC于点D.求证:AB=DC.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据二元一次方程的定义可知,m、n应满足以下4个关系式:,解之即得.
【详解】
解:由题意是关于,的二元一次方程,于是m、n应满足 ,解得,,故选D.
本题考查了二元一次方程的定义,认真审题并列出m、n应满足的4个关系式是解决此题的关键.
2、D
【解析】
直接根据旋转的性质求解
【详解】
绕着点逆时针旋转得到
∴BAD=CAE=20°
∴==30°+20°=50°
故选D
本题考查了旋转的性质。掌握旋转的性质是解题的关键。
3、C
【解析】
n边形的内角和为(n-2)180°,由此列方程求n的值
【详解】
解:设这个多边形的边数是n,
则:(n-2)180°=720°,
解得n=6,
故选:C.
本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
4、D
【解析】
分别判断各选项是否正确即可解答.
【详解】
解:A. 若a>b,则3﹣a<3﹣b,故A错误;
B. 如果ab=0,那么a=0或b=0,故B错误;
C. 一组对边相等,另一组对边平行的四边形不一定是平行四边形,故C错误;
D. 有两个角为60°的三角形是等边三角形,故D正确;
故选D.
本题考查了不等式的性质、平行四边形的判定、三角形的判定等知识,熟练掌握是解题的关键.
5、D
【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.
【详解】
由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.
故选D.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
6、A
【解析】
科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
解:0.00000012米=1.2×10﹣7米,故答案为A。
此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
7、C
【解析】
设原计划每天修建xm,则实际每天修建(1+25%)xm,根据题意可得,增加工作效率之后比原计划提前4天完成任务,据此列方程.
【详解】
解:设原计划每天修建xm,则实际每天修建(1+25%)xm,由题意得:
故选C.
8、B
【解析】
根据菱形和矩形的性质,容易得出结论.
【详解】
解:菱形的性质有:四条边都相等,对边平行且相等;对角相等,邻角互补;对角线互相垂直平分;
矩形的性质有:对边平行且相等;四个角都是直角;对角线互相平分;
根据菱形和矩形的性质得出:菱形具有而矩形不一定具有的性质是四条边都相等;
故选:B.
本题考查了菱形和矩形的性质;熟练掌握菱形和矩形的性质是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x>
【解析】
根据分式、二次根式有意义的条件,确定x的范围即可.
【详解】
依题意有2x-3>2,
解得x>.
故该函数的自变量的取值范围是x>.
故答案为:x>.
本题考查的知识点为:分式有意义,分母不为2.二次根式有意义,被开方数是非负数.自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+23中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x-2.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
10、.
【解析】
设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于 D,BE⊥轴于点E,由全等三角形的判定定理可知△AOD△OBE(ASA),故可得出,即可求得的值.
【详解】
解:设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于 D,BE⊥轴于点E,如图:
∵∠AOE+∠DOB=90°,∠AOE+∠OAD=90°,
∴∠OAD=∠BOE,
同理可得∠AOD=∠OBE,
在△AOD和△OBE中, ,
∴△AOD△OBE(ASA),
∵点B在第四象限,
∴,即,
解得,
∴反比例函数的解析式为:.
故答案为.
本题考查动点问题,难度较大,是中考的常考知识点,正确作出辅助线,证明两个三角形全等是解题的关键.
11、1
【解析】
首先解出一元二次方程的解,根据两个方程的解相同,把x的值代入第二个方程中,解出a即可.
【详解】
解:解方程得x1=2,x2=−1,
∵x+1≠0,
∴x≠−1,
把x=2代入中得:,
解得:a=1,
故答案为1.
此题主要考查了解一元二次方程,以及解分式方程,关键是正确确定x的值,分式方程注意分母要有意义.
12、1.
【解析】
利用三角形中位线定理求出BC,再利用平行四边形的对边相等即可解决问题.
【详解】
∵EF是△DBC的中位线,
∴BC=2EF=1,
∵四边形ABCD是平行四边形,
∴AD=BC=1,
故答案为1.
此题考查平行四边形的性质和三角形中位线定理,解题关键在于利用中位线的性质计算出BC的长度
13、1.
【解析】
根据=1填上即可.
【详解】
使为整数的x的值可以是1,
故答案为1.
本题考查了实数,能理解算术平方根的意义是解此题的关键,此题答案比唯一,如还有5、﹣3、﹣10等.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)
【解析】
(1)先把分母化为相同的式子,再进行去分母求解;
(2)依次解出各不等式的解集,再求出其公共解集.
【详解】
解:(1)原分式方程可化为,
方程两边同乘以得:
解这个整式方程得:
检验:当,
所以,是原方程的根
(2)解不等式①得:
解不等式②得:
不等式①、②的解集表示在同一数轴上:
所以原不等式组的解集为:
此题主要考查分式方程、不等式组的求解,解题的关键是熟知分式方程的解法及不等式的性质.
15、 (1)89分,78分,初二(1);(2) 排名最好的是初二一班,最差的是初二(2)班,理由见解析;(3)见解析
【解析】
(1)用算术平均数的计算方法求得三个班的服装统一的平均数,找到动作整齐的众数即可;
(2)利用加权平均数分别计算三个班的得分后即可排序;
(3)根据成绩提出提高成绩的合理意见即可;
【详解】
(1)服装统一方面的平均分为:=89分;
动作整齐方面的众数为78分;
动作准确方面最有优势的是初二(1)班;
(2)∵初二(1)班的平均分为: =84.7分;
初二(2)班的平均分为:=82.8分;
初二(3)班的平均分为: =83.9;
∴排名最好的是初二一班,最差的是初二(2)班;
(3)加强动作整齐方面的训练,才是提高成绩的基础.
考查了平均数和加权平均数的计算.要注意,当所给数据有单位时,所求得的平均数与原数据的单位相同,不要漏单位.
16、(1)m=-2;(2) m ≠2时,y是x的一次函数
【解析】
(1)根据正比例函数的定义:一般地,形如y=kx(k是常数,k ≠0)的函数,叫做正比例函数,即可求解;
(2)根据一次函数的定义:一般地,形如y=kx+b(k,b是常数,k ≠0)的函数,叫做一次函数,即可求解.
【详解】
(1)当m2-4=0且m-2≠0时,y是x的正比例函数,
解得m=-2;
(2)当m-2≠0时,即m ≠2时,y是x的一次函数 .
本题考查正比例函数的定义,一次函数的定义.
17、(1)详见解析;(2)(-1,1);(3)2+2;(4)详见解析.
【解析】
(1)把点A向右平移2个单位,向下平移4个单位就是原点的位置,建立相应的平面直角坐标系;
(2)作线段AB的垂直平分线,寻找满足腰长是无理数的点C即可;
(3)利用格点三角形分别求出三边的长度,即可求出△ABC的周长;
(4)分别找出A、B、C关于y轴的对称点,顺次连接即可.
【详解】
解:(1)建立平面直角坐标系如图所示;
(2)(-1,1);
(3)AB==2,
BC=AC==,
∴△ABC的周长=2+2;
(4)画出△A'B'C′如图所示.
本题考查了作图,勾股定理,熟练正确应用勾股定理是解题的关键.
18、(1)证明见解析;(2)1s;(2)8s.
【解析】
分析:(1)由∠DFC=90°,∠C=30°,证出DF=2t=AE;
(2)当四边形BEDF是矩形时,△DEF为直角三角形且∠EDF=90°,求出t的值即可;
(3)先证明四边形AEFD为平行四边形.得出AB=3,AD=AC-DC=48-4t,若△DEF为等边三角形,则四边形AEFD为菱形,得出AE=AD,2t=48-4t,求出t的值即可;
详解:(1)在Rt△CDF中,∠C=30°,
∴DF=CD,
∴DF=•4t=2t,
又∵AE=2t,
∴AE=DF.
(2)当四边形BFDE是矩形时,有BE=DF,
∵Rt△ABC中,∠C=30°
∴AB=AC=×48=24,
∴BE=AB-AE=24-2t,
∴24-2t=2t,
∴t=1.
(3)∵∠B=90°,DF⊥BC
∴AE∥DF,∵AE=DF,
∴四边形AEFD是平行四边形,
由(1)知:四边形AEFD是平行四边形
则当AE=AD时,四边形AEFD是菱形
∴2t=48-4t,
解得t=8,又∵t≤==12,
∴t=8适合题意,
故当t=8s时,四边形AEFD是菱形.
点睛:本题是四边形综合题,主要考查了平行四边形、菱形、矩形的性质与判定以及锐角三角函数的知识,考查学生综合运用定理进行推理和计算的能力.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、50°或90°
【解析】
分析:分别从若AP⊥ON与若PA⊥OA去分析求解,根据三角函数的性质,即可求得答案.
详解:当AP⊥ON时,∠APO=90°,则∠A=50°,
当PA⊥OA时,∠A=90°,
即当△AOP为直角三角形时,∠A=50或90°.
故答案为50°或90°.
点睛:此题考查了直角三角形的性质,注意掌握数形结合思想与分类讨论思想的应用.
20、1
【解析】
根据勾股定理的逆定理得到这个三角形是直角三角形,根据直角三角形斜边上中线的性质计算即可.
【详解】
解:,,
,
这个三角形是直角三角形,斜边长为10,
最长边上的中线长为1,
故答案为:1.
本题考查的是直角三角形的性质、勾股定理的逆定理的应用,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
21、-4或1
【解析】
分析:点M、N的纵坐标相等,则直线MN在平行于x轴的直线上,根据两点间的距离,可列出等式|x-1|=5,从而解得x的值.
解答:解:∵点M(1,3)与点N(x,3)之间的距离是5,
∴|x-1|=5,
解得x=-4或1.
故答案为-4或1.
22、.
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好2名女生得到电影票的情况,再利用概率公式求解即可求得答案.
解:画树状图得:
∵共有12种等可能的结果,恰好2名女生得到电影票的有2种情况,
∴恰好2名女生得到电影票的概率是:=.
故答案为:.
23、
【解析】
依据一元二次方程根与系数的关系:x1+x2=-,x1·x2=,即可求出.
【详解】
因为2x2+5x+1=0,所有a=2、b=5、c=1,所以x1+x2=-,x1·x2=,有因为=x1x2(x1+x2),所以=-×=
本题考查一元二次方程根与系数之间的关系,熟练掌握相关知识是解的关键.
二、解答题(本大题共3个小题,共30分)
24、 A,,;; .
【解析】
(1)根据依次函数关系式,分别令x=0,y=0,即可求出一次函数与坐标轴的交点,即
B、C的坐标,然后再联立两个一次函数关系式为二元一次方程组,即可求解点A的坐标,
(2)直接解不等式即可求解,
(3) 设,根据的面积为12,可得:,解得:,即,
再设直线CD的函数表达式是,把,代入得:,
解得:,因此直线CD的函数表达式为:.
【详解】
直线:,
当时,,
当时,,
则,,
解方程组:得:,
则,
故A,,,
关于x的不等式的解集为:,
设,
的面积为12,
,
解得:,
,
设直线CD的函数表达式是,把,代入得:,
解得:,
直线CD的函数表达式为:.
本题主要考查一次函数图像性质和待定系数法求一次函数关系式,解决本题的关键是要熟练掌握一次函数图象性质和待定系数法求一次函数解析式.
25、(1)证明见解析;(2)1.
【解析】
(1)根据等边对等角可得∠B=∠ACF,然后利用SAS证明△ABE≌△ACF即可;
(2)根据△ABE≌△ACF,可得∠CAF=∠BAE=30°,再根据AD=AC,利用等腰三角形的性质即可求得∠ADC的度数.
【详解】
(1)∵AB=AC,
∴∠B=∠ACF,
在△ABE和△ACF中,
,
∴△ABE≌△ACF(SAS);
(2)∵△ABE≌△ACF,∠BAE=30°,
∴∠CAF=∠BAE=30°,
∵AD=AC,
∴∠ADC=∠ACD,
∴∠ADC==1°,
故答案为1.
本题考查了全等三角形的判定与性质、等腰三角形的性质,熟练掌握相关性质与定理是解题的关键.
26、详见解析
【解析】
根据等腰三角形的性质和三角形的内角和求出∠B=∠ADB,∠C=∠DAC解答即可.
【详解】
解:∵在△ABC中,AC=BC,∠C=36°,
∴∠B=∠BAC=72°,
∵AD平分∠BAC交BC于点D,
∴∠BAD=36°,∠DAC=36°,
∴∠ADB=72°,
∴∠B=∠ADB,
∴AB=AD,
∵∠C=∠DAC=36°,
∴AD=DC,
∴AB=DC.
此题考查等腰三角形的性质与判定,三角形的角平分线,关键是根据等腰三角形的性质和三角形的内角和解答.
题号
一
二
三
四
五
总分
得分
批阅人
衬衫尺码
39
40
41
42
43
平均每天销售件数
10
12
20
12
12
服装统一
动作整齐
动作准确
初二(1)班
初二(2)班
初二(3)班
2024-2025学年黄石市重点中学九上数学开学统考模拟试题【含答案】: 这是一份2024-2025学年黄石市重点中学九上数学开学统考模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年海南省洋浦中学九上数学开学统考模拟试题【含答案】: 这是一份2024-2025学年海南省洋浦中学九上数学开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年甘肃省榆中学县九上数学开学统考模拟试题【含答案】: 这是一份2024-2025学年甘肃省榆中学县九上数学开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。