广西南宁市广西大学附属中学2024年数学九年级第一学期开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)二次根式有意义的条件是( )
A.x<2B.x<﹣2C.x≥﹣2D.x≤2
2、(4分)如图,D,E是△ABC中AB,BC边上的点,且DE∥AC,∠ACB角平分线和它的外角的平分线分别交DE于点G和H.则下列结论错误的是( )
A.若BG∥CH,则四边形BHCG为矩形
B.若BE=CE时,四边形BHCG为矩形
C.若HE=CE,则四边形BHCG为平行四边形
D.若CH=3,CG=4,则CE=2.5
3、(4分)在某校举行的“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( )
A.众数B.方差C.中位数D.平均数
4、(4分)的值为( )
A.B.C.4D.8
5、(4分)若代数式在实数范围内有意义,则a的取值范围是( )
A.a≠0B.a>2C.a≥2D.a≥2且a≠0
6、(4分)关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )
A.2B.-2C.±2D.-
7、(4分)不能判定四边形ABCD为平行四边形的题设是( )
A.AB=CD,AB∥CDB.∠A=∠C,∠B=∠DC.AB=AD,BC=CDD.AB=CD,AD=BC
8、(4分)如图,在四边形ABCD中,对角线AC与BD相交于点O,已知AB∥DC,则添加下列结论中的一个条件后,仍不能判定四边形ABCD是平行四边形的是( )
A.AO=COB.AC=BDC.AB=CDD.AD∥BC
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在一次数学单元考试中,某小组6名同学的成绩(单位:分)分别是:65,80,70,90,100,70。则这组数据的中位数分别是_________________________分。
10、(4分)一次函数y= -2x+4的图象与坐标轴所围成的三角形面积是 _____.
11、(4分)下面是某校八年级(1)班一组女生的体重(单位:kg)36 35 45 42 33 40 42,这组数据的平均数是____,众数是_____,中位数是_____.
12、(4分)如图,直线y=-x+m与y=nx+4n的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n>0的解集为___________.
13、(4分)如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.
(1)求证:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的长.
15、(8分)我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
(发现与证明)▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB`C,连结B`D.
结论1:△AB`C与▱ABCD重叠部分的图形是等腰三角形;结论2:B`D∥AC;
(1)请证明结论1和结论2;
(应用与探究)
(2)在▱ABCD中,已知BC=2,∠B=45°,将△ABC沿AC翻折至△AB`C,连接B`D若以A、C、D、B`为顶点的四边形是正方形,求AC的长(要求画出图形)
16、(8分)某种计时“香篆”在0:00时刻点燃,若“香篆”剩余的长度h(cm)与燃烧的时间x(h)之间是一次函数关系,h与x的一组对应数值如表所示:
(1)写出“香篆”在0:00时刻点然后,其剩余的长度h(cm)与燃烧时间x(h)的函数关系式,并解释函数表达式中x的系数及常数项的实际意义;
(2)通过计算说明当“香篆”剩余的长度为125cm时的时刻.
17、(10分)(1)解不等式:
(2)解方程:
18、(10分)某校学生会在得知田同学患重病且家庭困难时,特向全校3000名同学发起“爱心”捐款活动,为了解捐款情况,学生会随机调查了该校某班学生的捐款情况,并将得到的数据绘制成如下两个统计图,请根据相关信息解答下列问题.
(1)该班的总人数为 ______ 人,将条形图补充完整;
(2)样本数据中捐款金额的众数 ______ ,中位数为 ______ ;
(3)根据样本数据估计该校3000名同学中本次捐款金额不少于20元有多少人?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,未超过20本的不打折,试写出付款金额(单位:元)与购买数量(单位:本)之间的函数关系_______.
20、(4分)如图,矩形ABCD中,,,CE是的平分线与边AB的交点,则BE的长为______.
21、(4分)的化简结果为________
22、(4分)若关于的方程的解为正数,则的取值范围是__________.
23、(4分)直线是由直线向上平移______个单位长度得到的一条直线.直线是由直线向右平移______个单位长度得到的一条直线.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,四边形是平行四边形,是边上一点.
(1)只用无刻度直尺在边上作点,使得,保留作图痕迹,不写作法;
(2)在(1)的条件下,若,,求四边形的周长.
25、(10分)如图,在平面直角坐标系中,有一,且,,,已知是由绕某点顺时针旋转得到的.
(1)请写出旋转中心的坐标是 ,旋转角是 度;
(2)以(1)中的旋转中心为中心,分别画出顺时针旋转90°、180°的三角形;
(3)设两直角边、、斜边,利用变换前后所形成的图案验证勾股定理.
26、(12分) (1)化简:.
(2)若(1)中的值是不等式“”的一个负整数解,请你在其中选一个你喜欢的数代入(1)中求值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据被开方数大于等于0列式计算即可得解.
【详解】
由题意得:x+1≥0,解得:x≥﹣1.
故选C.
本题考查了的知识点为:二次根式有意义的条件是被开方数是非负数.
2、C
【解析】
由∠ACB角平分线和它的外角的平分线分别交DE于点G和H可得∠HCG=90°,∠ECG=∠ACG即可得HE=EC=EG,再根据A,B,C,D的条件,进行判断.
【详解】
解:∵∠ACB角平分线和它的外角的平分线分别交DE于点G和H,
∴∠HCG=90°,∠ECG=∠ACG;
∵DE∥AC.
∴∠ACG=∠HGC=∠ECG.
∴EC=EG;
同理:HE=EC,
∴HE=EC=EG=HG;
若CH∥BG,
∴∠HCG=∠BGC=90°,
∴∠EGB=∠EBG,
∴BE=EG,
∴BE=EG=HE=EC,
∴CHBG是平行四边形,且∠HCG=90°,
∴CHBG是矩形;
故A正确;
若BE=CE,
∴BE=CE=HE=EG,
∴CHBG是平行四边形,且∠HCG=90°,
∴CHBG是矩形,
故B正确;
若HE=EC,则不可以证明四边形BHCG为平行四边形,
故C错误;
若CH=3,CG=4,根据勾股定理可得HG=5,
∴CE=2.5,
故D正确.
故选C.
本题考查了矩形的判定,平行四边形的性质和判定,关键是灵活这些判定解决问题.
3、C
【解析】
由于比赛取前3名进入决赛,共有5名选手参加,故应根据中位数的意义解答即可.
【详解】
解:因为5位进入决赛者的分数肯定是5名参赛选手中最高的,
而且5个不同的分数按从大到小排序后,中位数及中位数之前的共有3个数,
故只要知道自己的分数和中位数就可以知道是否进入决赛了;
故选:C.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
4、C
【解析】
表示16的算术平方根,根据二次根式的意义解答即可.
【详解】
.
故选C.
主要考查了二次根式的化简.注意最简二次根式的条件是:
①被开方数的因数是整数,因式是整式;
②被开方数中不含能开得尽方的因数因式.
上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式.
5、C
【解析】
根据二次根式的被开方数是非负数,且分母不为0即可解答.
【详解】
解:∵代数式在实数范围内有意义,
∴a﹣1≥0,a≠0,
解得:a≥1.
故选C.
本题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
6、B
【解析】
根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.
【详解】
由题意得:m2-3=1,且m+1<0,
解得:m=-2,
故选:B.
此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k≠0)的自变量指数为1,当k<0时,y随x的增大而减小.
7、C
【解析】
A. ∵AB=CD,AB∥CD,
∴四边形ABCD为平行四边形(一组对边平行且相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形;
B. ∵∠A=∠C,∠B=∠D,
∴四边形ABCD为平行四边形(两组对角分别相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形;
C. 由AB=AD,BC=CD,不能判定四边形ABCD为平行四边形;
D. ∵AB=CD,AD=BC,
∴四边形ABCD为平行四边形(两组对边分别相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形
故选C.
本题考查平行四边形的判定.
8、B
【解析】
根据平行四边形的判定定理依次判断即可.
【详解】
∵AB∥CD,
∴∠ABD=∠BDC,∠BAC=∠ACD,
∵AO=CO,
∴△ABO≌△CDO,
∴AB=CD,
∴四边形ABCD是平行四边形,故A正确,且C正确;
∵AB∥CD,AD∥BC,
∴四边形ABCD是平行四边形,故D正确;
由AC=BD无法证明四边形ABCD是平行四边形,且平行四边形的对角线不一定相等,
∴B错误;
故选:B.
此题考查了添加一个条件证明四边形是平行四边形,正确掌握平行四边形的判定定理并运用解题是关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、75
【解析】
根据中位数的定义即可求解.
【详解】
先将数据从小到大排序为65,70,70,80,90,100,
故中位数为(70+80)=75
此题主要考查中位数的求解,解题的关键是熟知中位数的定义.
10、4
【解析】
【分析】结合一次函数y=-2x+4的图象可以求出图象与x轴的交点为(2,0),以及与y轴的交点为(0,4),可求得图象与坐标轴所围成的三角形的面积.
【详解】令y=0,则x=2;令x=0,则y=4,
∴一次函数y=-2x+4的图象与x轴的交点为(2,0),与y轴的交点为(0,4).
∴S=.
故正确答案为4.
【点睛】本题考查了一次函数图象与坐标轴的交点坐标.关键令y=0,可求直线与x轴的交点坐标;令x=0,可求直线与y轴的交点坐标.
11、
【解析】
分别利用平均数、众数及中位数的定义求解后即可得出答案.
【详解】
解:将数据重新排列为33、35、36、40、42、42、45,
所以这组数据的平均数为,
众数为、中位数为,
故答案为:、、.
此题考查了平均数、众数和中位数,一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以总个数.
12、
【解析】
令时,解得,则与x轴的交点为(﹣4,0),再根据图象分析即可判断.
【详解】
令时,解得,故与x轴的交点为(﹣4,0).
由函数图象可得,当时,函数的图象在x轴上方,且其函数图象在函数图象的下方,故解集是.
故答案为: .
本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.
13、22.5
【解析】
∵ABCD是正方形,
∴∠DBC=∠BCA=45°,
∵BP=BC,
∴∠BCP=∠BPC=(180°-45°)=67.5°,
∴∠ACP度数是67.5°-45°=22.5°
三、解答题(本大题共5个小题,共48分)
14、(1)证明过程见解析;(2)8.
【解析】
(1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;
(2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.
【详解】
(1)∵四边形ABCD是平行四边形, ∴AD∥BC,AB∥CD,
∴∠DAE=∠F,∠D=∠ECF, ∵E是▱ABCD的边CD的中点, ∴DE=CE,
在△ADE和△FCE中,
,∴△ADE≌△FCE(AAS);
(2)∵ADE≌△FCE, ∴AE=EF=3, ∵AB∥CD, ∴∠AED=∠BAF=90°,
在▱ABCD中,AD=BC=5, ∴DE==4, ∴CD=2DE=8
考点:(1)平行四边形的性质;(2)全等三角形的判定与性质
15、【发现与证明】(1)见解析;【应用与探究】(1)AC的长为或1.
【解析】
结论1:先判断出,进而判断出 ,即可得出结论;
结论1、先判断出,进而判断出 ,再判断出,即可得出结论;
分两种情况:利用等腰直角三角形的性质即可得出结论.
【详解】
解:结论1:四边形ABCD是平行四边形,
,,
,
由折叠知,≌,
∴∠ACB=∠ACB’,BC=B’C
∴∠EAC=∠ACB’
,
即是等腰三角形;
结论1:由折叠知,,,
∵AE=CE
【应用与探究】:分两种情况:如图1所示:
四边形是正方形,
,
,
,
;
如图1所示:;
综上所述:AC的长为或1.
此题是几何变换综合题主要考查了平行四边形的性质,折叠的性质,正方形的性质,判断出是等腰三角形是解本题的关键.
16、(1)x的系数表示“香篆”每小时燃烧10cm,常数项表示“香篆”未点燃之前的长度为240cm;;(2)“香篆”在0:00点燃后,燃烧了11.5小时后的时刻为11点30分.
【解析】
(1)根据待定系数法确定函数关系式即可求解;
(2)把h=125代入解析式即可求解.
【详解】
解:(1)∵“香篆”在0:00时刻点然后,其剩余的长度h(cm)与燃烧时间x(h)的函数关系式是一次函数,
设一次函数的解析式为:h=kx+b,
∵当x=3时,h=210,当x=4时,h=200,
可得:,
解得:,
所以解析式为:h=﹣10x+240,
x的系数表示“香篆”每小时燃烧10cm,常数项表示“香篆”未点燃之前的长度为240cm;
(2)当“香篆”剩余125cm时,可知h=125,代入解析式得:125=﹣10x+240,
解得:x=11.5,
所以“香篆”在0:00点燃后,燃烧了11.5小时后的时刻为11点30分.
此题主要考查一次函数的应用,解题的关键是根据题意求出一次函数的解析式.
17、(1);(2)
【解析】
(1)按照去分母、移项、合并同类项的步骤求解即可;
(2)按照去分母、系数化1的步骤求解即可.
【详解】
(1)去分母得
移项、合并得
解得
所以不等式的解集为
(2)去分母得
解得
经检验,是分式方程的解.
此题主要考查不等式以及分式方程的求解,熟练掌握,即可解题.
18、(1)50;补图见解析;(2)10,12.5;(3)660人
【解析】
(1)根据统计图中的数据可以求得额该班的总人数,可以求得捐款10元的人数,从而可以将条形统计图补充完整;
(2)根据补全的条形统计图可以得到相应的众数和中位数;
(3)根据统计图可以求得不少于20元有多少人数的占比,再乘以总人数即可.
【详解】
解:(1)14÷28%=50,
捐款10元的人数为:50-9-14-7-4=16,
故答案为:50,补全的条形统计图如右图所示,
(2)由补全的条形统计图可得,
样本数据中捐款金额的众数是10,中位数是: =12.5,
故答案为:10,12.5;
(3)捐款金额不少于20元的人数 人,
即该校3000名同学本次捐款金额不少于20元有660人.
此题考查条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额与购书数的函数关系式,再进行整理即可得出答案.
【详解】
解:根据题意得:
,
整理得:;
则付款金额(单位:元)与购书数量(单位:本)之间的函数关系是;
故答案为:.
本题考查了分段函数,理解分段收费的意义,明确每一段购书数量及相应的购书单价是解题的关键,要注意的取值范围.
20、
【解析】
分析:作于由≌,推出,,,设,则,在中,根据,构建方程求出x即可;
详解:作于H.
四边形ABCD是矩形,
,
,
在和中,
,
≌,
,,,设,则,
在中,,
,
,
,
故答案为:.
点睛:本题考查矩形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
21、
【解析】
根据二次根式的乘法,化简二次根式即可.
【详解】
解:,
故答案为:.
本题考查了二次根式的性质与化简,熟练掌握二次根式的乘法法则是解题关键.
22、且
【解析】
首先去分母化成整式方程,求得x的值,然后根据方程的解大于0,且x-1≠0即可求得m的范围.
【详解】
解:去分母,得1x+m=3(x-1),
去括号,得1x+m=3x-3,
解得:x=m+3,
根据题意得:m+3-1≠0且m+3>0,
解得:m>-3且m≠-1.
故答案是:m>-3且m≠-1.
本题考查了分式方程的解,注意:忽视x-1≠0是本题的易错点.
23、2, 1.
【解析】
根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.
【详解】
解:直线是由直线向上平移 2个单位长度得到的一条直线.由直线向右平移 1个单位长度得到.
故答案是:2;1.
本题考查一次函数图象与几何变换,掌握平移中解析式的变化规律是:左加右减;上加下减是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)见解析;(2)1.
【解析】
(1)如图,连接,交于点,作直线交于点,点即为所求;
(2)求出,即可解决问题.
【详解】
(1)如图,点即为所求;
(2),,
,
,
,
,
四边形是平行四边形,
,,
平行四边形的周长为1.
本题考查作图——复杂作图,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题.
25、(1)旋转中心坐标是,旋转角是;(2)见解析;(3)见解析
【解析】
(1)由图形可知,对应点的连线CC1、AA1的垂直平分线过点O,根据旋转变换的性质,点O即为旋转中心,再根据网格结构,观察可得旋转角为90°;
(2)利用网格结构,分别找出旋转后对应点的位置,然后顺次连接即可;
(3)利用面积,根据正方形CC1C2C3的面积等于正方形AA1A2B的面积加上△ABC的面积的4倍,列式计算即可得证.
【详解】
(1)旋转中心坐标是,旋转角是
(2)画出图形如图所示.
(3)由旋转的过程可知,四边形和四边形是正方形.
∵,
∴,
,
∴.
即中,,
本题考查了利用旋转变换作图,旋转变换的旋转以及对应点连线的垂直平分线的交点即为旋转中心,勾股定理的证明,熟练掌握网格结构,找出对应点的位置是解题的关键.
26、 (1)x+1;(2)-2.
【解析】
(1)先将括号内的进行通分,再把除法转化为乘法,约分化简即可;
(2)求出不等式的解集,再取一个满足(1)成立的x的负整数值代入求解即可.
【详解】
(1)原式=
=x+1;
(2)解不等式“”得,
∴其负整数解是-3、-2、-1.
∴当时,原式=-3+1=-2
分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.要注意代入求值时,要使原式和化简的每一步都有意义.
题号
一
二
三
四
五
总分
得分
批阅人
燃烧的时间x(h)
…
3
4
5
6
…
剩余的长度h(cm)
…
210
200
190
180
…
广西南宁市第三中学2024-2025学年数学九年级第一学期开学学业质量监测试题【含答案】: 这是一份广西南宁市第三中学2024-2025学年数学九年级第一学期开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广西南宁市广西大学附属中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】: 这是一份广西南宁市广西大学附属中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广西南宁市广西大学附属中学九年级下学期4月数学月考试题: 这是一份2024年广西南宁市广西大学附属中学九年级下学期4月数学月考试题,共4页。