年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    广西南宁市广西大学附属中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】

    广西南宁市广西大学附属中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】第1页
    广西南宁市广西大学附属中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】第2页
    广西南宁市广西大学附属中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西南宁市广西大学附属中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】

    展开

    这是一份广西南宁市广西大学附属中学2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在同一直角坐标系中,函数和的图象相交于点A,则不等式的解集是
    A.B.C.D.
    2、(4分)下列图形是轴对称的是( )
    A.B.C.D.
    3、(4分)若关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实数根x1,x2,且有x1﹣x1x2+x2=1﹣a,则a的值是( )
    A.﹣1B.1C.1或﹣1D.2
    4、(4分)如图所示是根据某班级名同学一周的体育锻炼情况绘制的统计图,由图像可知该班同学一周参加体育锻炼时间的中位数,众数分别是( )
    A.,
    B.,
    C.,
    D.,
    5、(4分)某药品经过两次降价,每瓶零售价由元降为元。已知两次降价的百分率相同,每次降价的百分率为 ,根据题意列方程得( )
    A.B.
    C.D.
    6、(4分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=( )度.
    A.270°B.300°
    C.360°D.400°
    7、(4分)学校准备从甲、乙、丙、丁四名同学中选择一名同学参加市里举办的“汉字听写大赛”,下表是四位同学几次测试成绩的平均分和方差的统计结果,如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是( )
    A.甲B.乙C.丙D.丁
    8、(4分)如图四边形ABCD是正方形,点E、F分别在线段BC、DC上,∠BAE=30°.若线段AE绕点A逆时针旋转后与线段AF重合,则旋转的角度是( )
    A.30°B.45°C.60°D.90°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)当x=2时,二次根式的值为________.
    10、(4分)不等式组的解集是_____.
    11、(4分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集是_____________。
    12、(4分)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为_____.
    13、(4分)如图,中,,,,为的中点,若动点以1的速度从点出发,沿着的方向运动,设点的运动时间为秒(),连接,当是直角三角形时,的值为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,则乙每分钟打______个字.
    15、(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).
    (1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;
    (2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.
    16、(8分)如图,在矩形中,为对角线,点为边上一动点,连结,过点作,垂足为,连结.
    (1)证明:;
    (2)当点为的中点时,若,求的度数;
    (3)当点运动到与点重合时,延长交于点,若,则 .
    17、(10分)如图,在矩形ABCD中,点E为AD上一点,连接BE、CE, .
    (1)如图1,若 ;
    (2)如图2,点P是EC的中点,连接BP并延长交CD于点F,H为AD上一点,连接HF,且 ,求证:.
    18、(10分)如图1,在等边△ABC中,AB=BC=AC=8cm,现有两个动点E,P分别从点A和点B同时出发,其中点E以1cm/秒的速度沿AB向终点B运动;点P以2cm/秒的速度沿射线BC运动.过点E作EF∥BC交AC于点F,连接EP,FP.设动点运动时间为t秒(0<t≤8).
    (1)当点P在线段BC上运动时,t为何值,四边形PCFE是平行四边形?请说明理由;
    (2)设△EBP的面积为y(cm2),求y与t之间的函数关系式;
    (3)当点P在射线BC上运动时,是否存在某一时刻t,使点C在PF的中垂线上?若存在,请直接给出此时t的值(无需证明),若不存在,请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)一组数据1,2,a,4,5的平均数是3,则这组数据的方差为_____.
    20、(4分)如图,四边形中,,,且,顺次连接四边形各边中点,得到四边形,再顺次连接四边形各边中点得到四边形,如此进行下去,得到四边形,则四边形的面积是________.
    21、(4分)在平面直角坐标系中,点P(-3,2)关于x轴对称的点P1的坐标是______________.
    22、(4分)的化简结果为________
    23、(4分)如图,等边△ABC内有一点O,OA=3,OB=4,OC=5,以点B为旋转中心将BO逆时针旋转60°得到线段,连接,下列结论:①可以看成是△BOC绕点B逆时针旋转60°得到的;②点O与的距离为5;③∠AOB=150°;④S四边形AOBO′=6+4;⑤=6+.其中正确的结论有_____.(填正确序号)
    二、解答题(本大题共3个小题,共30分)
    24、(8分)课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.
    (1)求证:△ADC≌△CEB;
    (2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).

    25、(10分)如图,在平面直角坐标系中,矩形OABC的顶点A在y轴上,C在x轴上,把矩形OABC沿对角线AC所在的直线翻折,点B恰好落在反比例函数的图象上的点处,与y轴交于点D,已知,.
    求的度数;
    求反比例函数的函数表达式;
    若Q是反比例函数图象上的一点,在坐标轴上是否存在点P,使以P,Q,C,D为顶点的四边形是平行四边形?若存在,请求出P点的坐标;若不存在,请说明理由.
    26、(12分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长1个单位长度的正方形).
    (1)将沿轴方向向左平移6个单位,画出平移后得到的.
    (2)将绕着点顺时针旋转,画出旋转后得到的;直接写出点的坐标.
    (3)作出关于原点成中心对称的,并直接写出的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    先利用得到,再求出m得到,接着求出直线与x轴的交点坐标为,然后写出直线在x轴上方和在直线下方所对应的自变量的范围.
    【详解】
    当时,,则,
    把代入y2得,解得,
    所以,解方程,解得,则直线与x轴的交点坐标为,
    所以不等式的解集是,
    故选C.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合.
    2、D
    【解析】
    根据图形的特点结合轴对称图形和中心对称图形的概念解答.
    【详解】
    解:A、既不是轴对称图形,也不是中心对称图形,故本项错误;
    B、既不是轴对称图形,也不是中心对称图形,故本项错误;
    C、是中心对称图形,不是轴对称图形,故本项错误;
    D、是轴对称图形,故本项正确;
    故选择:D.
    此题考查了轴对称图形和中心对称图形的概念,熟记的定义是解题的关键.
    3、A
    【解析】
    根据一元二次方程的求根公式以及根与系数的关系即可解答.
    【详解】
    解 :依题意△>0,即(3a+1)2﹣8a(a+1)>0,
    即a2﹣2a+1>0,(a﹣1)2>0,a≠1,
    ∵关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,
    ∴x1﹣x1x2+x2=1﹣a,
    ∴x1+x2﹣x1x2=1﹣a,
    ∴﹣=1﹣a,
    解得:a=±1,
    又a≠1,
    ∴a=﹣1.
    故选:A.
    本题考查一元二次方程根的综合运用,要注意根据题意舍弃一个根是解题关键.
    4、B
    【解析】
    根据中位数、众数的概念分别求解即可.
    【详解】
    将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;
    众数是一组数据中出现次数最多的数,即8;
    故选:B
    考查了中位数、众数的概念,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.
    5、D
    【解析】
    设每次降价的百分率为x,根据该药品的原价及经两次降价后的价格,即可得出关于x的一元二次方程,此题得解.
    【详解】
    解:设每次降价的百分率为x,
    根据题意得:168(1-x)2=1.
    故选:D.
    本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
    6、C
    【解析】
    根据多边形的外角和等于360°解答即可.
    【详解】
    由多边形的外角和等于360°可知,
    ∠1+∠2+∠3+∠4+∠5=360°,
    故答案为:360°.
    本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.
    7、C
    【解析】
    先比较平均数得到乙同学和丙同学成绩较好,然后比较方差得到丙同学的状态稳定,于是可决定选丙同学去参赛.
    【详解】
    乙、丙同学的平均数比甲、丁同学的平均数大,
    应从乙和丙同学中选,
    丙同学的方差比乙同学的小,
    丙同学的成绩较好且状态稳定,应选的是丙同学;
    故选:.
    主要考查平均数和方差,方差可以反映数据的波动性.方差越小,越稳定.
    8、A
    【解析】
    根据正方形的性质可得AB=AD,∠B=∠D=90°,再根据旋转的性质可得AE=AF,然后利用“HL”证明Rt△ABE和Rt△ADF全等,根据全等三角形对应角相等可得∠DAF=∠BAE,然后求出∠EAF=30°,再根据旋转的定义可得旋转角的度数.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB=AD,∠B=∠D=90°,
    ∵线段AE绕点A逆时针旋转后与线段AF重合,
    ∴AE=AF,
    在Rt△ABE和Rt△ADF中,

    ∴Rt△ABE≌Rt△ADF(HL),
    ∴∠DAF=∠BAE,
    ∵∠BAE=30°,
    ∴∠DAF=30°,
    ∴∠EAF=90°-∠BAE-∠DAF=90°-30°-30°=30°,
    ∴旋转角为30°.
    故选:A.
    本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,求出Rt△ABE和Rt△ADF全等是解题的关键,也是本题的难点.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、3
    【解析】
    【分析】把x=2代入二次根式进行计算即可得.
    【详解】把x=2代入得,
    ==3,
    故答案为:3.
    【点睛】本题考查了二次根式的值,准确计算是解题的关键.
    10、x≤1
    【解析】
    先求出每个不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:
    解不等式①得:x≤1,
    解不等式②得:x<7,
    ∴不等式组的解集是x≤1,
    故答案为:x≤1.
    本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.
    11、x<
    【解析】
    先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.
    【详解】
    解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),
    ∴3=2m,
    解得m,
    ∴点A的坐标是(,3),
    ∴不等式2x<ax+4的解集为x<.
    此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    12、1
    【解析】
    解不等式组,得到不等式组的解集,根据整数解的个数判断a的取值范围,解分式方程,用含有a的式子表示y,根据解的非负性求出a的取值范围,确定符合条件的整数a,相加即可.
    【详解】
    解:,
    解①得,x<5;
    解②得,
    ∴不等式组的解集为;
    ∵不等式有且只有四个整数解,
    ∴,
    解得,﹣1<a≤1;
    解分式方程得,y=1﹣a;
    ∵方程的解为非负数,
    ∴1﹣a≥0;即a≤1;
    综上可知,﹣1<a≤1,
    ∵a是整数,
    ∴a=﹣1,0,1,1;
    ∴﹣1+0+1+1=1
    故答案为1.
    本题考查了解一元一次不等式组,分式方程,根据题目条件确定a的取值范围,进一步确定符合条件的整数a,相加求和即可
    13、2或6或3.1或4.1.
    【解析】
    先求出AB的长,再分①∠BDE=90°时,DE是ΔABC的中位线,然后求出AE的长度,再分点E在AB上和在BA上两种情况列出方程求解即可;②∠BED=90°时,利用∠ABC的余弦列式求出BE,然后分点E在AB上和在BA上两种情况列出方程求解即可.
    【详解】
    解:∵∠ACB=90°,∠ABC=60°,BC=2cm,
    ∴AB=BC÷=2÷=4,
    ①∠BDE=90°时,如图(1)
    ∵D为BC的中点,
    ∴DE是ΔABC的中位线,
    ∴AE=AB=×4=2,
    点E在AB上时,t=2÷1=2秒,
    点E在BA上时,点E运动的路程为4×2-2=6,
    t=6÷1=6;
    ②∠BED=90°时,如图(2)
    BE=BD=×2×=
    点E在AB上时,t=(4-0.1)÷1=3.1,
    点E在BA上时,点E运动的路程为4+0.1=4.1,
    t=4.1÷1=4.1,
    综上所述,t的值为2或6或3.1或4.1.
    故答案为:2或6或3.1或4.1.
    掌握三角形的中位线,三角形的中位线平行于第三边并且等于第三边的一半.含30°角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.
    三、解答题(本大题共5个小题,共48分)
    14、45
    【解析】
    设乙每分钟打字x个,甲每分钟打个,根据题意可得:,去分母可得:
    ,解得,经检验可得:,故答案为:45.
    15、(1)图形见解析;(2)P点坐标为(,﹣1).
    【解析】
    (1)分别作出点A、B关于点C的对称点,再顺次连接可得;由点A的对应点A2的位置得出平移方向和距离,据此作出另外两个点的对应点,顺次连接可得;
    (2)连接A1A2、B1B2,交点即为所求.
    【详解】
    (1)如图所示:A1(3,2)、C1(0,2)、B1(0,0);A2(0,-4)、B2(3,﹣2)、C2(3,﹣4).
    (2)将△A1B1C1绕某一点旋转可以得到△A2B2C2,旋转中心的P点坐标为(,﹣1).
    本题主要考查作图-旋转变换、平移变换,解题关键是根据旋转变换和平移变换的定义作出变换后的对应点.
    16、(1)见解析;(2)53°;(3)
    【解析】
    (1)根据两角对应相等的两个三角形相似即可判断.
    (2)只要证明△CPQ∽△APC,可得∠PQC=∠ACP即可解决问题.
    (3)连接AF.与Rt△ADF≌Rt△AQF(HL),推出DF=QF,设AD=AQ=BC=m,DF=FQ=x,FC=y,CQ=a,证明△BCQ∽△CFQ,可得,推出,即,由CF∥AB,可得,推出,可得,推出x2+xy-y2=0,解得x=y或(舍弃),由此即可解决问题.
    【详解】
    (1)证明:∵四边形ABCD是矩形,
    ∴∠ABP=90°,
    ∵BQ⊥AP,
    ∴∠BQP=∠ABP=90°,
    ∵∠BPQ=∠APB,
    ∴△ABP∽△BQP.
    (2)解:∵△ABP∽△BQP,

    ∴PB2=PQ•PA,
    ∵PB=PC,
    ∴PC2=PQ•PA,

    ∵∠CPQ=∠APC,
    ∴△CPQ∽△APC,
    ∴∠PQC=∠ACP,
    ∵∠BAC=37°,
    ∴∠ACB=90°-37°=53°,
    ∴∠CQP=53°.
    (3)解:连接AF.
    ∵∠D=∠AQF=90°,AF=AF,AD=AQ,
    ∴Rt△ADF≌Rt△AQF(HL),
    ∴DF=QF,设AD=AQ=BC=m,DF=FQ=x,FC=y,CQ=a,
    ∵∠BCF=∠CQB=∠CQF=90°,
    ∴∠BCQ+∠FCQ=90°,∠CBQ=90°,
    ∴∠FCQ=∠CBQ,
    ∴△BCQ∽△CFQ,
    ∴,

    ∴,
    ∵CF∥AB,
    ∴,


    ∴x2+xy-y2=0,
    ∴ x=y或(舍弃),

    ∴.
    故答案为:.
    本题属于相似形综合题,考查了矩形的性质,相似三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
    17、(1)1;(2)详见解析.
    【解析】
    (1)根据题意四边形ABCD是矩形,可得AE=BE,再利用勾股定理得到,即可解答
    (2)延长BF,AD交于点M.,得到再证明,得到,即可解答
    【详解】
    解:(1)∵四边形ABCD是矩形
    ∴ AD=AC=4


    ∴AE=BE




    (2)延长BF,AD交于点M.
    ∵四边形ABCD是矩形
    ∴,∴
    ∵点P是EC的中点
    ∴PC=PE








    此题考查矩形的性质,全等三角形的判定与性质,勾股定理,解题关键在于利用矩形的性质求解
    18、(1)t=;(2)y-t2+4t(0<t≤8);(3)t=时,点C在PF的中垂线上.
    【解析】
    (1)根据当EF=PC时,四边形PCFE是平行四边形,列出关于t的等式求解即可;
    (2)作EH⊥BC,用t表示出BP、EH即可得△EBP的面积y;
    (3)根据PC=CF,列出关于t的等式即可求.
    【详解】
    (1)如图1中,
    ∵EF∥PC,
    ∴当EF=PC时,四边形PCFE是平行四边形,
    ∴t=8-2t,
    ∴t=.
    (2)如图2中,作EH⊥BC于H.
    在Rt△EBH中,∵BE=8-t,∠B=60°,
    ∴EH=BE•sin60°=(8-t)•,
    ∴y=•BP•EH=•2t•(8-t)=-t2+4t(0<t≤8).
    (3)如图3中,当点P在BC的延长线上时,PC=CF时,点C在PF的中垂线上.
    ∴2t-8=8-t,
    ∴t=,
    ∴t=时,点C在PF的中垂线上.
    本题考查的知识点是三角形的综合运用,解题关键是作辅助线进行解答.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    由平均数的公式得:(51+1+x+4+5)÷5=3,
    解得x=3;
    ∴方差=[(1-3)1+(1-3)1+(4-3)1+(3-3)1+(5-3)1]÷5=1;
    故答案是:1.
    20、
    【解析】
    根据四边形的面积与四边形的面积间的数量关系来求其面积.
    【详解】
    解:∵四边形中,,,且

    由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,
    四边形的面积是.
    故答案为:.
    本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.
    21、(-3,-2)
    【解析】
    根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.
    【详解】
    点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2).
    故答案为:(﹣3,﹣2).
    本题考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.
    22、
    【解析】
    根据二次根式的乘法,化简二次根式即可.
    【详解】
    解:,
    故答案为:.
    本题考查了二次根式的性质与化简,熟练掌握二次根式的乘法法则是解题关键.
    23、①③⑤
    【解析】
    如图,首先证明△OBO′为等边三角形,得到OO′=OB=4,故选项②错误;证明△ABO′≌△CBO,得到选项①正确;运用勾股定理逆定理证明△AOO′为直角三角形,求出∠AOB的度数,得到选项③正确;运用面积公式求出四边形AOBO′的面积,可判断选项④错误;将△AOB绕A点逆时针旋转60°至△AO″C,可得△AOO″是边长为3的等边三角形,△COO″是边长为3,4,5的直角三角形,再根据S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″进行计算即可判断选项⑤正确.
    【详解】
    解:如下图,连接OO′,
    ∵△ABC为等边三角形,
    ∴∠ABC=60°,AB=CB;
    由题意得:∠OBO′=60°,OB=O′B,
    ∴△OBO′为等边三角形,∠ABO′=∠CBO,
    ∴OO′=OB=4;∠BOO′=60°,
    ∴选项②错误;
    在△ABO′与△CBO中,,
    ∴△ABO′≌△CBO(SAS),
    ∴AO′=OC=5,
    可以看成是△BOC绕点B逆时针旋转60°得到的,
    ∴选项①正确;
    在△AOO′中,∵32+42=52,
    ∴△AOO′为直角三角形,
    ∴∠AOO′=90°,∠AOB=90°+60°=150°,
    ∴选项③正确;
    ∵S四边形AOBO′=×42×sin60°+×3×4=4+6,
    ∴选项④错误;
    如下图,将△AOB绕A点逆时针旋转60°至△AO″C,连接OO″,
    同理可得,△AOO″是边长为3的等边三角形,
    △COO″是边长为3,4,5的直角三角形,
    ∴S△AOC+S△AOB
    =S四边形AOCO″
    =S△COO″+S△AOO″
    =×3×4+×32×sin60°
    =6+.
    故⑤正确;
    故答案为:①③⑤.
    本题考查旋转的性质、三角形全等的判定和性质、等边三角形的判定和性质、勾股定理的逆定理,熟练掌握旋转的性质、等边三角形的判定和性质、勾股定理的逆定理的应用是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2)5cm.
    【解析】
    (1)根据题意可知AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,从而得到结论;
    (2)根据题意得:AD=4a,BE=3a,根据全等可得DC=BE=3a,由勾股定理可得(4a)2+(3a)2=252,再解即可.
    【详解】
    (1)根据题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,
    ∴∠ADC=∠CEB=90°,
    ∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,
    ∴∠BCE=∠DAC,
    在△ADC和△CEB中,

    ∴△ADC≌△CEB(AAS);
    (2)由题意得:AD=4a,BE=3a,
    由(1)得:△ADC≌△CEB,
    ∴DC=BE=3a,
    在Rt△ACD中:AD2+CD2=AC2,
    ∴(4a)2+(3a)2=252,
    ∵a>0,
    解得a=5,
    答:砌墙砖块的厚度a为5cm.
    考点1.:全等三角形的应用2.勾股定理的应用.
    25、(1).(2).(3)满足条件的点P坐标为,,,,.
    【解析】
    (1);
    (2)求出B’的坐标即可;
    (3)分五种情况,分别画出图形可解决问题.
    【详解】
    解:四边形ABCO是矩形,



    如图1中,作轴于H.


    ,,,,


    反比例函数的图象经过点,


    如图2中,作轴交于,以DQ为边构造平行四边形可得,;
    如图3中,作交于,以为边构造平行四边形可得,;
    如图4中,当,以为边构造平行四边形可得,
    综上所述,满足条件的点P坐标为,,,,.
    本题考核知识点:反比例函数,矩形,翻折,直角三角形等综合知识. 解题关键点:作辅助线,数形结合,分类讨论.
    26、(1)见解析;(2)见解析;;(3)见解析;.
    【解析】
    (1)图形的平移时,我们只需要把三个顶点ABC,按照点的平移方式,平移得到新点,然后顺次连接各点即为平移后的.
    (2)首先只需要画出B,C旋转后的对应点,,然后顺次连接各点即为旋转过后的,然后写出坐标即可;
    (3)首先依次画出点ABC关于原点成中心对称的对应点,然后顺次连接各点即可得到,然后写出坐标即可.
    【详解】
    解:(1)如图所示;
    (2)如图所示,由图可知;
    (3)如图所示,由图可知.
    本题的解题关键是:根据图形平移、旋转、中心对称的性质,找到对应点位置,顺次连接对应点即是变化后的图形;这里需要注意的是运用点的平移时,横坐标满足“左(移)减右(移)加”,纵坐标满足“下(移)减上(移)加;旋转时找准旋转中心和旋转角度,再进行画图.
    题号





    总分
    得分




    平均分
    94
    98
    98
    96
    方差
    1
    1.2
    1
    1.8

    相关试卷

    广西省南宁市2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】:

    这是一份广西省南宁市2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广西省柳州市2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】:

    这是一份广西省柳州市2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广西南宁市广西大学附属中学2024年数学九年级第一学期开学学业质量监测试题【含答案】:

    这是一份广西南宁市广西大学附属中学2024年数学九年级第一学期开学学业质量监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map