广西桂林市灌阳县2024-2025学年九年级数学第一学期开学经典试题【含答案】
展开
这是一份广西桂林市灌阳县2024-2025学年九年级数学第一学期开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)矩形具有而平行四边形不具有的性质是( )
A.对角线互相平分B.邻角互补C.对角相等D.对角线相等
2、(4分)如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE的长为( )
A.5B.6C.8D.10
3、(4分)以下列各组数为三角形的边长,能构成直角三角形的是( )
A.1,2,3B.1,1,C.2,4,5D.6,7,8
4、(4分)下列各点在反比例函数图象上的是( )
A.B.C.D.
5、(4分)4名选手在相同条件下各射靶10次,统计结果如下表,表现较好且更稳定的是( )
A.甲B.乙C.丙D.丁
6、(4分)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( )
A.20%B.25%C.50%D.62.5%
7、(4分)不等式组的解集在数轴上表示为
A.B.
C.D.
8、(4分)下列图案中,既是轴对称图形又是中心对称图形的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数y=kx+b的图象交y轴于正半轴,且y随x的增大而减小,请写出符合上述条件的一个解析式:_____.
10、(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的面积为49,则正方形A、B、C、D的面积之和为_____.
11、(4分)反比例函数 y=的图象同时过 A(-2,a)、B(b,-3)两点,则(a-b)2=__.
12、(4分)一个多边形的内角和是它外角和的1.5倍,那么这个多边形是______边形.
13、(4分)▱ABCD的周长是30,AC、BD相交于点O,△OAB的周长比△OBC的周长大3,则AB=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分) (1)
(2)
15、(8分)如图,在正方形网格中,每个小正方形的边长为1个单位长度。平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上。线段AB的两个端点也在格点上。
(1)若将线段AB绕点O顺时针旋转90°得到线段A’B’。试在图中画出线段A’B’。
(2)若线段A’’B’’与线段A’B’关于y轴对称,请画出线段A’’B’’。
(3)若点P是此平面直角坐标系内的一点,当点A、 B’、B’’、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标。
16、(8分)某校在一次广播操比赛中,甲、乙、丙各班得分如下表:
(1)根据三项得分的平均分,从高到低确定三个班级排名顺序.
(2)该校规定:服装统一、动作整齐、动作准确三项得分都不得低于80分,并按,,的比例计入总分根据规定,请你通过计算说明哪一组获得冠军.
17、(10分)(1)如图(1),已知:正方形ABCD的对角线交于点O,E是AC上的一动点,过点A作AG⊥BE于G,交BD于F.求证:OE=OF.
(2)在(1)的条件下,若E点在AC的延长线上,以上结论是否成立,为什么?
18、(10分)如图,在中,点是边上的一点,且,过点作于点,交于点,连接、.
(1)若,求证:平分;
(2)若点是边上的中点,求证:
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)为了解宿迁市中小学生对春节联欢晚会语言类节目喜爱的程度,这项调查采用__________方式调查较好(填“普查”或“抽样调查”).
20、(4分)当______时,分式方程会产生增根.
21、(4分)如图,在平面直角坐标系xOy中,平行四边形ABCD的四个顶点A,B,C,D是整点(横、纵坐标都是整数),则平行四边形ABCD的面积是_____
22、(4分)已知一组数据:10,8,6,10,8,13,11,10,12,7,10,11,10,9,12,10,9,12,9,8,把这组数据按照6~7,8~9,10~11,12~13分组,那么频率为0.4的一组是_________.
23、(4分)函数中,自变量x的取值范围是___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:在平行四边形ABCD中,点E、F分别在AD和BC上,点G、H在AC上,且AE=CF,AH=CG.
求证:四边形EGFH是平行四边形.
25、(10分)已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A.C不重合),过点P作PE⊥PB,PE交射线DC于点E,过点E作EF⊥AC,垂足为点F,当点E落在线段CD上时(如图),
(1)求证:PB=PE;
(2)在点P的运动过程中,PF的长度是否发生变化?若不变,试求出这个不变的值,若变化,试说明理由;
26、(12分)(1)如图,在平行四边形中,过点作 于点 ,交 于点 ,过点 作 于点 ,交 于点 .
①求证:四边形 是平行四边形;
②已知,求的长.
(2)已知函数.
①若函数图象经过原点,求的值
②若这个函数是一次函数,且随着的增大而减小,求的取值范围
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据矩形相对于平行四边形的对角线特征:矩形的对角线相等,求解即可.
【详解】
解:由矩形对角线的特性可知:矩形的对角线相等.
故选:D.
本题考查的知识点是矩形的性质以及平行四边形的性质,掌握矩形以及平行四边形的边、角、对角线的性质是解此题的关键.
2、A
【解析】
由等腰三角形的性质证得BD=DC,根据直角三角形斜边上的中线的性质即可求得结论.
【详解】
解:∵AB=AC=10,AD平分∠BAC,
∴AD⊥BC,
∵E为AC的中点,
,
故选:A.
本题主要考查了等腰三角形的性质,直角三角形斜边上的中线的性质,熟练掌握直角三角形斜边上的中线的性质是解决问题的关键.
3、B
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A、12+22≠32,故不是直角三角形,故此选项错误;
B、12+12=()2,故是直角三角形,故此选项正确;
C、22+42≠52,故不是直角三角形,故此选项错误;
D、62+72≠82,故不是直角三角形,故此选项错误.
故选B.
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
4、C
【解析】
由可得,xy=-5,然后进行排除即可.
【详解】
解:由,即,xy=-5,经排查只有C符合;
故答案为C.
本题考查了反比例函数的性质,即对于反比例函数,有xy=k是解答本题的关键.
5、B
【解析】
先比较平均数,乙、丁的平均成绩好且相等,再比较方差即可解答.
【详解】
解:∵乙、丁的平均成绩大于甲、丙,且乙的方差小于丁的方差,
∴表现较好且更稳定的是乙,
故选:B.
本题考查方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
6、C
【解析】
试题解析:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,
由题意可得:2(1+x)2=4.5,
解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),
答即该店销售额平均每月的增长率为50%;
故选C.
7、D
【解析】
分别求出不等式组中每一个不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
【详解】
:,
由得,,
由得,,
故此不等式组的解集为:,
在数轴上表示为:
故选D.
本题考查了解一元一次不等式组以及在数轴上表示不等式组的解集,熟练掌握不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.在数轴上表示时要注意实心圆点与空心圆点的区别.
8、B
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故此选项错误;
B、是轴对称图形,也是中心对称图形,故此选项正确;
C、不是轴对称图形,是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误.
故选:B.
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
试题解析:∵一次函数y=kx+b的图象交y轴于正半轴,
∴b>0,
∵y随x的增大而减小,
∴k<0,
例如y=-x+1(答案不唯一,k<0且b>0即可).
考点:一次函数图象与系数的关系.
10、1
【解析】
根据勾股定理计算即可.
【详解】
解:最大的正方形的面积为1,
由勾股定理得,正方形E、F的面积之和为1,
∴正方形A、B、C、D的面积之和为1,
故答案为1.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
11、
【解析】
先将A(-2,a)、B(b,-3)两点的坐标代入反比例函数的解析式y=,求出a、b的值,再代入(a-b)2,计算即可.
【详解】
∵反比例函数y=的图象同时过A(−2,a)、B(b,−3)两点,
∴a= =−1,b= = ,
∴(a−b) 2=(−1+) 2= .
故答案为.
此题考查反比例函数图象上点的坐标特征,解题关键在于把已知点代入解析式
12、五
【解析】
设多边形边数为n.
则360°×1.5=(n−2)⋅180°,
解得n=5.
故选C.
点睛:多边形的外角和是360度,多边形的内角和是它的外角和的1.5倍,则多边形的内角和是540度,根据多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.
13、1.
【解析】
如图:由四边形ABCD是平行四边形,可得AB=CD,BC=AD,OA=OC,OB=OD;又由△OAB的周长比△OBC的周长大3,可得AB﹣BC=3,又因为▱ABCD的周长是30,所以AB+BC=10;解方程组即可求得.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD,BC=AD,OA=OC,OB=OD;
又∵△OAB的周长比△OBC的周长大3,
∴AB+OA+OB﹣(BC+OB+OC)=3
∴AB﹣BC=3,
又∵▱ABCD的周长是30,
∴AB+BC=15,
∴AB=1.
故答案为1.
三、解答题(本大题共5个小题,共48分)
14、(1)x1=−3,x2=3;(2)x1=,x2=1.
【解析】
(1)先移项得到2x(x+3)−6(x+3)=0,然后利用因式分解法解方程;
(2)先把方程整理为一般式,然后利用因式分解法解方程.
【详解】
解:(1)2x(x+3)−6(x+3)=0,
(x+3)(2x−6)=0,
x+3=0或2x−6=0,
所以x1=−3,x2=3;
(2)
2x2+3x−5=0,
(2x+5)(x−1)=0,
2x+5=0或x−1=0,
所以x1=,x2=1.
本题考查了解一元二次方程−因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.
15、(1)见解析;(2)见解析;(3)(3)P 点坐标为(−4,1)、(4,1)、(0,−5).
【解析】
(1)利用网格特点和旋转的性质画出点A、B的对应点A′、B′,从而得到线段A′B′;
(2)利用关于y轴对称的点的坐标特征写出A″、B″点的坐标,然后描点即可得到线段A″B″;
(3)分别以AB″、AB′和B″B′为对角线画平行四边形,从而得到P点位置,然后写出对应点的坐标.
【详解】
(1)如图,线段A′B′为所作;
(2)如图,线段A″B″为所作;
(3)P 点坐标为(−4,1)、(4,1)、(0,−5).
此题考查作图-轴对称变换,平行四边形的性质,作图-旋转变换,解题关键在于掌握作图法则.
16、(1)乙、甲、丙;(2)丙班级获得冠军.
【解析】
利用平均数的公式即可直接求解,即可判断;
利用加权平均数公式求解,即可判断.
【详解】
分、分、分,
所以从高到低确定三个班级排名顺序为:乙、甲、丙;
乙班的“动作整齐”分数低于80分,
乙班首先被淘汰,
而分、分,
丙班级获得冠军.
本题考查了算术平均数和加权平均数的计算.平均数等于所有数据的和除以数据的个数.
17、(1)详见解析;(2)以上结论仍然成立.
【解析】
(1)利用正方形的性质得OA=OB,∠AOB=∠BOC=90°,则利用等角的余角相等得到∠GAE=∠OBE,则可根据”ASA“判断△AOF≌△BOE,从而得到OF=OE;
(2)同样方法证明△AOF≌△BOE,仍然得到OF=OE.
【详解】
解:(1)证明:∵四边形ABCD为正方形,
∴OA=OB,∠AOB=∠BOC=90°,
∵AG⊥BE于点G,
∴∠AGE=90°,
∴∠GAE=∠OBE,
在△AOF和△BOE中,,
∴△AOF≌△BOE(ASA),
∴OF=OE;
(2)解:以上结论仍然成立.理由如下:
同样可证明△AOF≌△BOE(ASA),所以OF=OE.
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质;两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.
18、(1)见解析;(2)见解析.
【解析】
(1)由四边形是平行四边形,,易证得,又由,可证得,即可证得平分;
(2)延长,交的延长线于点,易证得,又由,可得是的斜边上的中线,继而证得结论.
【详解】
证明:(1)四边形是平行四边形,
,,
,
,
,
,
,
在和中,
,
,
,
平分;
(2)如图,延长,交的延长线于点,
四边形是平行四边形,
,
,
点是边上的中点,
,
在和中,
,
,
,
,
,
,
.
此题考查了平行四边形的性质、等腰三角形的性质、直角三角形的性质以及全等三角形的判定与性质.注意掌握辅助线的作法,注意掌握数形结合思想的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、抽样调查
【解析】
分析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
详解:为了解宿迁市中小学生对中华古诗词喜爱的程度,因为人员多、所费人力、物力和时间较多,所以适合采用的调查方式是抽样调查.
故答案为抽样调查.
点睛:本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
20、1
【解析】
解分式方程,根据增根的含义:使最简公分母为0的根叫做分式方程的增根,即可求得.
【详解】
解:去分母得,解得,
而此方程的最简公分母为,令故增根为.
即,解得.
故答案为1.
本题考查解分式方程,难度不大,是中考的常考点,熟练掌握增根的含义是顺利解题的关键.
21、1
【解析】
结合网格特点利用平行四边形的面积公式进行求解即可.
【详解】
由题意AD=5,平行四边形ABCD的AD边上的高为3,
∴S平行四边形ABCD=5×3=1,
故答案为:1.
本题考查了网格问题,平行四边形的面积,熟练掌握网格的结构特征以及平行四边形的面积公式是解题的关键.
22、
【解析】
首先数出数据的总数,然后数出各个小组内的数据个数,根据频率的计算公式,求出各段的频率,即可作出判断.
【详解】
解:共有10个数据,其中6~7的频率是1÷10=0.1;
8~9的频率是6÷10=0.3;
10~11的频率是8÷10=0.4;
11~13的频率是4÷10=0.1.
故答案为.
本题考查频数与频率,掌握频率的计算方法:频率=频数÷总数.
23、且.
【解析】
根据二次根式的性质以及分式的意义,分别得出关于的关系式,然后进一步加以计算求解即可.
【详解】
根据二次根式的性质以及分式的意义可得:,且,
∴且,
故答案为:且.
本题主要考查了二次根式的性质与分式的性质,熟练掌握相关概念是解题关键.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
先根据平行四边形的性质得到AD∥BC,进而有∠EAH=∠FCG,再证明△AHE≌△CGF,利用全等三角形的性质和直线平行的判定得到FG∥EH,再根据平行四边形的判定定理即可证明;
【详解】
证明:∵ABCD为平行四边形,
∴AD∥BC(平行四边形对边平行)
∴∠EAH=∠FCG(两直线平行,内错角相等).
又∵AE=CF,AH=CG,
∴△AHE≌△CGF(SAS).
∴EH=FG,∠FGH=∠EHG(全等三角形对应边相等,对应角相等).
∴FG∥EH(内错角相等,两直线平行).
∴四边形GEHF为平行四边形(一组对边平行且相等的四边形是平行四边形).
本题主要考查了平行四边形的判定与性质、三角形全等的判定与性质,掌握平行四边形的性质与判定定理是解题的关键.
25、(1)见解析;(2)
【解析】
(1)过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.要证PB=PE,只需证到△PGB≌△PHE即可;(2)连接BD,如图2.易证△BOP≌△PFE,则有BO=PF,只需求出BO的长即可.
【详解】
(1)①证明:过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.
∵四边形ABCD是正方形,PG⊥BC,PH⊥DC,
∴∠GPC=∠ACB=∠ACD=∠HPC=45°.
∴PG=PH,∠GPH=∠PGB=∠PHE=90°.
∵PE⊥PB即∠BPE=90°,
∴∠BPG=90°−∠GPE=∠EPH.
在△PGB和△PHE中,
.
∴△PGB≌△PHE(ASA),
∴PB=PE.
②连接BD,如图2.
∵四边形ABCD是正方形,∴∠BOP=90°.
∵PE⊥PB即∠BPE=90°,
∴∠PBO=90∘−∠BPO=∠EPF.
∵EF⊥PC即∠PFE=90°,
∴∠BOP=∠PFE.
在△BOP和△PFE中,
,
∴△BOP≌△PFE(AAS),
∴BO=PF.
∵四边形ABCD是正方形,
∴OB=OC,∠BOC=90∘,
∴BC= OB.
∵BC=1,∴OB= ,
∴PF=.
∴点PP在运动过程中,PF的长度不变,值为.
此题考查正方形的性质,全等三角形的判定与性质,四边形综合题,解题关键在于作辅助线
26、(1)①详见解析;②13;(2)①m=3;②
【解析】
(1)①只要证明DN∥BM,DM∥BN即可;
②只要证明△CEM≌△AFN,可得FN=EM=5,在Rt△AFN中,根据勾股定理AN=即可解决问题;
(2)①根据待定系数法,只需把原点代入即可求解;
②直线y=kx+b中,y随x的增大而减小说明k<1.
【详解】
(1)①ABCD是平行四边形,
又 ,
∴DN∥BM,
∴四边形 是平行四边形;
②解:∵四边形BMDN是平行四边形,
∴DM=BN,
∵CD=AB,CD∥AB,
∴CM=AN,∠MCE=∠NAF,
∵∠CEM=∠AFN=91°,
∴△CEM≌△AFN(AAS),
∴FN=EM=5,
在Rt△AFN中,CM=;
(2)①,∵函数图象经过原点
代入解析式, 即m-3=1,m=3;
②根据y随x的增大而减小说明k<1,
即:
解得:
∴的取值范围是:.
本题考查一次函数的性质,平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
题号
一
二
三
四
五
总分
得分
批阅人
选手
甲
乙
丙
丁
平均环数
9
9.5
9
9.5
方差
4.5
4
4
5.4
班级
服装统一
动作整齐
动作准确
甲
80
84
88
乙
97
78
80
丙
86
80
83
相关试卷
这是一份2024年广西省桂林市九上数学开学经典模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年广西桂林市灌阳县数学九上期末监测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份广西桂林市灌阳县2023-2024学年数学八上期末调研试题含答案,共6页。试卷主要包含了下列说法正确的是,下列命题是真命题的是,下列运算正确的是,已知是一个完全平方式,则等于,分式的值为0,则等内容,欢迎下载使用。