广西桂林市六校2025届九年级数学第一学期开学调研试题【含答案】
展开
这是一份广西桂林市六校2025届九年级数学第一学期开学调研试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各式不能用平方差公式法分解因式的是( )
A.x2﹣4B.﹣x2﹣y2C.m2n2﹣1D.a2﹣4b2
2、(4分)下列各组数,可以作为直角三角形的三边长的是( )
A.2,3,4B.3,4,6C.4,5,6D.6,8,10
3、(4分)一次函数y=—2x+3的图象与两坐标轴的交点是( )
A.(3,1)(1,);B.(1,3)(,1);C.(3,0)(0,) ;D.(0,3)(,0)
4、(4分)已知x=,y=,则x2+xy+y2的值为( )
A.2B.4C.5D.7
5、(4分)如图,点A是反比例函数(x<0)的图象上的一点,过点A作平行四边形ABCD,使B、C在x轴上,点D在y轴上,则平行四边形ABCD的面积为( )
A.1B.3C.6D.12
6、(4分)如图,分别是矩形的边上的点,将四边形沿直线折叠,点与点重合,点落在点处,已知,则的长是( )
A.4B.5C.6D.7
7、(4分)下列不能反映一组数据集中趋势的是( )
A.众数B.中位数C.方差D.平均数
8、(4分)菱形具有而矩形不一定具有的性质是 ( )
A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在菱形ABCD中,AB=5,对角线AC=1.若过点A作AE⊥BC,垂足为E,则AE的长为_________.
10、(4分)已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是_____.
11、(4分)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是_____.
12、(4分)命题“角平分线上的点到这个角的两边的距离相等”的逆命题是______,它是___命题(填“真”或“假”).
13、(4分)当时,__.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)已知,求的值;
(2)解方程:.
15、(8分)如图,已知△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,联结EC.
(1)求证:四边形ADCE是平行四边形;
(2)当∠BAC=90°时,求证:四边形ADCE是菱形.
16、(8分)如图,在的网格中,网格线的公共点称为格点.已知格点、,如图所示线段上存在另外一个格点.
(1)建立平面直角坐标系,并标注轴、轴、原点;
(2)直接写出线段经过的另外一个格点的坐标:_____;
(3)用无刻度的直尺画图,运用所学的三角形全等的知识画出经过格点的射线,使(保留画图痕迹),并直接写出点的坐标:_____.
17、(10分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2.5元收费,如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费.
(1)若该城市某户6月份用水18吨,该户6月份水费是多少?
(2)设某户某月用水量为x吨(x>20),应缴水费为y元,求y关于x的函数关系式.
18、(10分)已知关于 x 的一元二次方程 x2﹣2(k﹣1)x+k(k+2)=0 有两个不相等的实数根.
(1)求 k 的取值范围;
(2)写出一个满足条件的 k 的值,并求此时方程的根.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一个多边形的内角和为540°,则这个多边形是______边形.
20、(4分)某数学学习小组发现:通过连多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角钱共有3条,那么该多边形的内角和是______度.
21、(4分)计算:=__.
22、(4分)如果关于x的方程有实数根,则m的取值范围是_______________.
23、(4分)如图,如果一次函数与反比例函数的图象交于,两点,那么不等式的解为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)直线AB:y=﹣x+b分别与x,y轴交于A(6,0)、B 两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.
(1)求点B的坐标.
(2)求直线BC的解析式.
(3)直线 EF 的解析式为y=x,直线EF交AB于点E,交BC于点 F,求证:S△EBO=S△FBO.
25、(10分)某校从初二(1)班和(2)班各选拔10名同学组成甲队和乙队,参加数学竞赛活动,此次竞赛共有10道选择题,答对8题(含8题)以上为优秀,两队选手答对题数统计如下:
(1)上述表格中,a= ,b= ,c= ,m= .
(2)请根据平均数和众数的意义,对甲、乙两队选手进行评价.
26、(12分)在平面直角坐标系中,一次函数的图象与反比例函数(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).
(1)求一次函数和反比例函数解析式.
(2)若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.
(3)根据图象,直接写出不等式的解集.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
利用平方差公式的结构特征判断即可.
【详解】
解:下列各式不能用平方差公式法分解因式的是-x2-y2,
故选:B.
本题考查了用平方差公式进行因式分解,熟练掌握是解题的关键.
2、D
【解析】
分别求出两小边的平方和和最长边的平方,看看是否相等即可.
【详解】
∵22+32≠42,
∴以2,3,4为边的三角形不是直角三角形,故本选项不符合题意;
B、∵32+42≠62,
∴以3,4,6为边的三角形不是直角三角形,故本选项不符合题意;
C、∵42+52≠62,
∴以4,5,6为边的三角形不是直角三角形,故本选项不符合题意;
D、∵62+82=102,
∴以6,8,10为边的三角形是直角三角形,故本选项符合题意。
故选D.
本题考查了勾股定理的逆定理,能够熟记勾股定理的逆定理的内容是解此题的关键.
3、D
【解析】
y=—2x+3与横轴的交点为(,0),与纵轴的交点为(0,3),故选D
4、B
【解析】
试题分析:根据二次根式的运算法则进行运算即可.
试题解析:
.
故应选B
考点:1.二次根式的混合运算;2.求代数式的值.
5、C
【解析】
作AH⊥OB于H,根据平行四边形的性质得AD∥OB,则S平行四边形ABCD=S矩形AHOD,再根据反比例函数y=(k≠0)系数k的几何意义得到S矩形AHOD=1,所以有S平行四边形ABCD=1.
【详解】
作AH⊥OB于H,如图,
∵四边形ABCD是平行四边形ABCD,
∴AD∥OB,
∴S平行四边形ABCD=S矩形AHOD,
∵点A是反比例函数y=−(x<0)的图象上的一点,
∴S矩形AHOD=|-1|=1,
∴S平行四边形ABCD=1.
故选C.
本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
6、B
【解析】
设AE=x,,则BE=8-x,根据矩形折叠过程可得:三角形BCE是直角三角形,AE=CE,所以BE2+BC2=CE2
【详解】
设AE=x,,则BE=8-x,根据矩形折叠过程可得:三角形BCE是直角三角形,AE=CE
所以BE2+BC2=CE2
所以
解得x=5
即AE=5
故选:B
考核知识点:矩形的折叠问题.根据勾股定理求解是关键.
7、C
【解析】
试题分析:平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数.故答案选C.
考点:统计量的选择.
8、A
【解析】
菱形的对角线互相垂直平分,矩形的对角线相等互相平分.
则菱形具有而矩形不一定具有的性质是:对角线互相垂直
故选A
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理表示出AE的平方,列出方程求解并进一步得到AE的长.
【详解】
设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理可得:
所以
解得,
所以AE=.
考点:1.菱形的性质;2.勾股定理.
10、-1
【解析】
设另一根为,则1·= -1 ,
解得,=-1,
故答案为-1.
11、(5,1)
【解析】
【分析】根据点坐标平移特征:左减右加,上加下减,即可得出平移之后的点坐标.
【详解】∵点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,
∴所得的点的坐标为:(5,1),
故答案为(5,1).
【点睛】本题考查了点的平移,熟知点的坐标的平移特征是解题的关键.
12、到角的两边距离相等的点在角平分线上, 真.
【解析】
把一个命题的条件和结论互换就得到它的逆命题.
【详解】
解:命题“角平分线上的点到这个角两边的距离相等”的逆命题是“到角的两边距离相等的点在角平分线上”,它是真命题.
本题考查了互逆命题的知识和命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
13、
【解析】
将x的值代入x2-2x+2028=(x-1)2+2027,根据二次根式的运算法则计算可得.
【详解】
解:当x=1-时,
x2-2x+2028=(x-1)2+2027
=(1--1)2+2027
=(-)2+2027,
=3+2027
=1,
故答案为:1.
本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质和运算法则及完全平方公式.
三、解答题(本大题共5个小题,共48分)
14、(1);(2),.
【解析】
(1)代入即可进行求解;
(2)根据因式分解法即可求解一元二次方程.
【详解】
(1)代入得:
;
(2)解:,
,
,.
此题主要考查代数式求值与解一元二次方程,解题的关键是熟知整式的运算及方程的解法.
15、(1)见解析;(2)四边形ADCE是菱形,见解析.
【解析】
(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形;
(2)由∠BAC=90°,AD是边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,即证;
【详解】
(1)证明:∵AE∥BC,DE∥AB,
∴四边形ABDE是平行四边形,
∴AE=BD,
∵AD是边BC上的中线,
∴BD=DC,
∴AE=DC,
又∵AE∥BC,
∴四边形ADCE是平行四边形,
(2)∵∠BAC=90°,AD是边BC上的中线.
∴AD=CD,
∵四边形ADCE是平行四边形,
∴四边形ADCE是菱形
本题考查了平行四边形的判定和性质,(1)证得四边形ABDE,四边形ADCE为平行四边形即得;(2)由∠BAC=90°,AD上斜边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,从而证得四边形ADCE是菱形.
16、(1)如图所示见解析;(2)(5,4);(3).
【解析】
(1)由可确定原点的位置,进而建立平面直角坐标系;
(2)观察线段即可看出经过格点(5,4);
(3)先把EA绕点E顺时针旋转90度找到格点A的对应格点F,再对比E、B的相对位置找到点F的对应格点D.
【详解】
(1) 如图所示
(2)E(5,4).如下图
(3)如下图
先把EA绕点E顺时针旋转90度找到格点A的对应格点F,再对比E、B的相对位置找到点F的对应格点D,故.此时点D的坐标是(3,5).
本题考查了网格问题及坐标系的有关知识,通过旋转得到垂直是解题的关键.
17、(1)该户6月份水费是45元;(2)y=3.3x-1.
【解析】
(1)每户每月用水量如果未超过20吨,按每吨2.5元收费,而该城市某户6月份用水18吨,未超过20吨,根据水费=每吨水的价格×用水量,即可得出答案;
(2)如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费,设某户某月用水量为x吨,那么超出20吨的水量为(x-20)吨,根据水费=每吨水的价格×用水量,即可得出答案.
【详解】
解:(1)根据题意:该户用水18吨,按每吨2.5元收费,
2.5×18=45(元),
答:该户6月份水费是45元;
(2)设某户某月用水量为x吨(x>20),超出20吨的水量为(x-20)吨,
则该户20吨的按每吨2.5元收费,(x-20)吨按每吨3.3元收费,
应缴水费y=2.5×20+3.3×(x-20),
整理后得:y=3.3x-1,
答:y关于x的函数关系式为y=3.3x-1.
本题考查的是一次函数的应用,理清题意,找出各数量间的数量关系,正确得出函数关系式是解题关键.
18、方程的根
【解析】
(1)根据方程的系数结合根的判别式,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;
(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.
【详解】
(1)∵关于x的一元二次方程x1﹣1(k﹣a)x+k(k+1)=0有两个不相等的实数根,
∴△=[﹣1(k﹣1)]1﹣4k(k﹣1)=﹣16k+4>0,
解得:k< .
(1)当k=0时,原方程为x1+1x=x(x+1)=0,
解得:x1=0,x1=﹣1.
∴当k=0时,方程的根为0和﹣1.
本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、5.
【解析】
设这个多边形是n边形,由题意得,
(n-2) ×180°=540°,解之得,n=5.
20、1
【解析】
由多边形的一个顶点出发的对角线共有(n-3)条可求出边数,然后求内角和.
【详解】
∵多边形的一个顶点出发的对角线共有(n-3)条,
∴n-3=3,
∴n=6,
∴内角和=(6-2)×180°=1°,
故答案是:1.
本题运用了多边形的内角和定理,关键是要知道多边形的一个顶点出发的对角线共有(n-3)条.
21、2
【解析】
解:.故答案为.
22、
【解析】
分析:根据方程的系数结合根的判别式,即可得出△=16-8m≥0,解之即可得出m的取值范围.
详解:∵关于x的方程有实数根,
∴△=(-4)²-4×2m=16-8m≥0,
解得:m≤2
故答案为:m≤2
点睛:本题考查了根的判别式,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.
23、
【解析】
先求出m,n的值,再观察图象,一次函数的图象在反比例函数的图象上方,写出x的取值范围即可.
【详解】
∵点A(m,6)、B(n,3)在函数图象上,
∴m=1,n=2,
∴A点坐标是(1,6),B点坐标是(2,3),
观察图象可知,x的取值范围是1<x<2.
故答案为:1<x<2.
本题考查一次函数与反比例函数的交点、待定系数法、一元一次不等式等知识,解题的关键是熟练掌握待定系数法,学会利用图象解决问题,学会构建方程解决问题,属于中考常考题型.
二、解答题(本大题共3个小题,共30分)
24、 (1) B (0,6);(2) y=3x+6;(3)见解析.
【解析】
(1)先把A点坐标代入y=-x+b求出b=6,得到直线AB的解析式为y=-x+6,然后求自变量为0时的函数值即可得到点B的坐标;
(2)利用OB:OC=3:1得到OC=2,C点坐标为(-2,0),然后利用待定系数法求直线BC的解析式;
(3)根据两直线相交的问题,通过解方程组得E(3,3),解方程组得F(-3,-3),然后根据三角形面积公式可计算出S△EBO=9,S△FBO=9,S△EBO=S△FBO.
【详解】
(1)把A(6,0)代入y=-x+b得-6+b=0,解得b=6,
所以直线AB的解析式为y=-x+6,
当x=0时,y=-x+6=6,
所以点B的坐标为(0,6);
(2)解:∵OB:OC=3:1,而OB=6,
∴OC=2,
∴C点坐标为(-2,0),
设直线BC:y=mx+n,
把B(0,6),C(-2,0)分别代入得,解得,
∴直线BC的解析式为y=3x+6;
(3)证明:解方程组得,则E(3,3),
解方程组得,则F(-3,-3),
所以S△EBO=×6×3=9,
S△FBO=×6×3=9,
所以S△EBO=S△FBO.
本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.
25、(1)8,8,7,;(2)见解析.
【解析】
(1)根据表格中的数据可以求得a、b、c、m的值;
(2)根据表格中的数据可以从平均数和众数的意义,对甲、乙两队选手进行评价.
【详解】
解:(1)平均数.
中位数:共有10名同学,中位数为第5、第6的平均数,即b=8;
众数c=7,优秀率;
(2)甲乙两队的平均数都为8,说明两队的平均水平相同,甲队的众数为8,乙队的众数为7,说明出现人数最多的题数中,甲队大于乙队,若仅从平均数和众数分析,甲队优于乙队.
本题考查方差、加权平均数、中位数、众数,解答本题的关键是明确题意,求出a、b、c、m的值,知道方差、加权平均数、中位数、众数的含义.
26、(1)y=﹣x+,y=;(2)12;(3) x<﹣2或0<x<4.
【解析】
(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求△ABF的面积;(3)直接根据图象可得.
【详解】
(1)∵一次函数y=﹣x+b的图象与反比例函数y= (k≠0)图象交于A(﹣3,2)、B两点,
∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6
∴b=,k=﹣6
∴一次函数解析式y=﹣,反比例函数解析式y=.
(2)根据题意得: ,
解得: ,
∴S△ABF=×4×(4+2)=12
(3)由图象可得:x<﹣2或0<x<4
本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.
题号
一
二
三
四
五
总分
得分
答对题数
5
6
7
8
9
10
平均数()
甲队选手
1
0
1
5
2
1
8
乙队选手
0
0
4
3
2
1
a
中位数
众数
方差(s2)
优秀率
甲队选手
8
8
1.6
80%
乙队选手
b
c
1.0
m
相关试卷
这是一份2024年江西省瑞安市六校联盟九年级数学第一学期开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广西壮族自治区桂林市九上数学开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广西桂林市数学九年级第一学期开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。