广西玉林市北流市2024-2025学年九年级数学第一学期开学经典试题【含答案】
展开
这是一份广西玉林市北流市2024-2025学年九年级数学第一学期开学经典试题【含答案】,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是( )
A.∠DAC=∠ABCB.AC是∠BCD的平分线C.AC2=BC•CDD.
2、(4分)实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( )
A.4,5B.5,4C.4,4D.5,5
3、(4分)如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是( )
A.B.C.2D.
4、(4分)已知,则下列不等式成立的是( )
A.B.C.D.
5、(4分)若分式有意义,则的取值范围是( )
A.B.C.D.
6、(4分)一个等腰三角形的周长为14,其一边长为4那么它的底边长为( )
A.5B.4C.6D.4或6
7、(4分)已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是( )
A.B.C.D.
8、(4分)下列矩形都是由大小不等的正方形按照一定规律组成,其中,第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,…则第⑥个矩形的周长为( )
① ② ③ ④
A.42B.46 C.68D.72
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若,则y _______(填“是”或“不是”)x的函数.
10、(4分)在中,,,点是中点,点在上,,将沿着翻折,点的对应点是点,直线与交于点,那么的面积__________.
11、(4分)如图,在矩形ABCD中,,,将矩形沿AC折叠,则重叠部分的面积为______.
12、(4分)若关于x的二次方程(m+1)x2+5x+m2-3m=4的常数项为0,则m的值为______.
13、(4分)新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x元,可列方程为 .
三、解答题(本大题共5个小题,共48分)
14、(12分)某图书馆计划选购甲、乙两种图书.甲图书每本价格是乙图书每本价格的2.5倍,如果用900元购买图书,则单独购买甲图书比单独购买乙图书要少18本.
(1)甲、乙两种图书每本价格分别为多少元?
(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总费用不超过1725元,那么该图书馆最多可以购买多少本乙图书?
15、(8分)如图,菱形的对角线相交于点,,,相交于点.求证:四边形是矩形.
16、(8分)如图,在四边形ABCD中,,E为BD中点,延长CD到点F,使.
求证:
求证:四边形ABDF为平行四边形
若,,,求四边形ABDF的面积
17、(10分) (1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.
①求证:四边形BFDE是菱形;
②直接写出∠EBF的度数;
(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;
(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.
18、(10分)菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:
(1)求点D的坐标;
(2)若反比例函数y=(k≠0)的图象经过点H,则k= ;
(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A所代表的正方形的边长是_____.
20、(4分)已知a,b为一元二次方程x2+2x﹣9=0的两个根,那么a2+a﹣b的值为 .
21、(4分)如图,菱形ABCD中,AC、BD交于点O,DE⊥BC于点E,连接OE,若∠ABC=120°,则∠OED=______.
22、(4分) “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为________.
23、(4分)甲、乙两名射击手的100次测试的平均成绩都是9环,方差分别是S2甲=0.8,S2乙=0.35,则成绩比较稳定的是_____(填“甲”或“乙”).
二、解答题(本大题共3个小题,共30分)
24、(8分)甲乙两人同时登山,甲乙两人距地面的高度(米与登山时间(分之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山的速度是 米分钟,乙在地提速时距地面的高度为 米;
(2)直接写出甲距地面高度(米和(分之间的函数关系式;
(3)若乙提速后,乙的速度是甲登山速度的3倍.请问登山多长时间时,乙追上了甲,此时乙距地的高度为多少米?
25、(10分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.
26、(12分)在平面直角坐标系中,直线l1:y=x+5与反比例函数y=(k≠0,x>0)图象交于点A(1,n);另一条直线l2:y=﹣2x+b与x轴交于点E,与y轴交于点B,与反比例函数y=(k≠0,x>0)图象交于点C和点D(,m),连接OC、OD.
(1)求反比例函数解析式和点C的坐标;
(2)求△OCD的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
结合图形,逐项进行分析即可.
【详解】
在△ADC和△BAC中,∠ADC=∠BAC,
如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;
②,
故选C.
本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.
2、A
【解析】
根据众数及中位数的定义,结合所给数据即可作出判断.
【详解】
解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4
故选:A.
本题考查(1)、众数;(2)、中位数.
3、A
【解析】
试题分析:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.
设AB=AD=x.
又∵AD∥BC,
∴四边形AEFD是矩形形,
∴AD=EF=x.
在Rt△ABE中,∠ABC=60°,则∠BAE=30°,
∴BE=AB=x,
∴DF=AE==x,
在Rt△CDF中,∠FCD=30°,则CF=DF•ct30°=x.
又BC=6,
∴BE+EF+CF=6,即x+x+x=6,
解得 x=2
∴△ACD的面积是:AD•DF=x×x=×22=.
故选A.
考点:1.勾股定理2.含30度角的直角三角形.
4、C
【解析】
根据不等式的性质逐个判断即可.
【详解】
解:A、∵x>y,
∴2x>2y,故本选项不符合题意;
B、∵x>y,
∴x−6>y−6,故本选项不符合题意;
C、∵x>y,
∴x+5>y+5,故本选项符合题意;
D、∵x>y,
∴−3x<−3y,故本选项不符合题意;
故选:C.
本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键,注意:不等式的性质1是:不等式的两边都加(或减)同一个数或式子,不等号的方向不变,不等式的性质2是:不等式的两边都乘(或除以)同一个正数,不等号的方向不变,不等式的性质3是:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.
5、A
【解析】
根据分式有意义的条件:分母不等于0,即可求解.
【详解】
解:根据题意得:x-1≠0,
解得:x≠1.
故选:A.
此题考查分式有意义的条件,正确理解条件是解题的关键.
6、D
【解析】
分为两种情况:①4是等腰三角形的底边;②4是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析.
【详解】
解:①当4是等腰三角形的底边时,则其腰长为=5,能构成三角形,
②当4是等腰三角形的腰时,则其底边为14-4×2=6,能构成三角形,
综上,该三角形的底边长为4或6.
故选:D.
本题考查了等腰三角形的性质及三角形三边关系,注意分类讨论思想在解题中的应用.
7、B
【解析】
试题解析:设乙车的速度为x千米/小时,则甲车的速度为(x-12)千米/小时,
由题意得,.
故选B.
8、C
【解析】
试题分析:观察图形:第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,通过计算第 = 4 \* GB3 ④矩形的周长为26,前4个矩形的周长有这样的一个规律,第③个的矩形的周长=第①个矩形的周长+第②个矩形的周长,即16=6+10;第 = 4 \* GB3 ④个的矩形的周长=第 = 3 \* GB3 ③个矩形的周长+第②个矩形的周长,即26=10+16;第 = 5 \* GB3 ⑤个的矩形的周长=第 = 3 \* GB3 ③个矩形的周长+第 = 4 \* GB3 ④个矩形的周长,即=26+16=42;第 = 6 \* GB3 ⑥个的矩形的周长=第 = 4 \* GB3 ④个矩形的周长+第 = 5 \* GB3 ⑤个矩形的周长,即=26+42=48
考点:矩形的周长
点评:本题考查矩形的周长,通过前四个2的周长找出规律是本题的关键,考查学生的归纳能力
二、填空题(本大题共5个小题,每小题4分,共20分)
9、不是
【解析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应的关系,据此即可判断.
【详解】
对于x的值,y的对应值不唯一,故不是函数,
故答案为:不是.
本题是对函数定义的考查,熟练掌握函数的定义是解决本题的关键.
10、或
【解析】
通过计算E到AC的距离即EH的长度为3,所以根据DE的长度有两种情况:①当点D在H点上方时,②当点D在H点下方时,两种情况都是过点E作交AC于点E,过点G作交AB于点Q,利用含30°的直角三角形的性质和勾股定理求出AH,DH的长度,进而可求AD的长度,然后利用角度之间的关系证明,再利用等腰三角形的性质求出GQ的长度,最后利用即可求解.
【详解】
①当点D在H点上方时,
过点E作交AC于点E,过点G作交AB于点Q,
,点是中点,
.
∵,
.
,
,
.
,
,
,,
,
.
由折叠的性质可知,,
,
,
.
又 ,
.
,
.
,
即,
.
,
;
②当点D在H点下方时,
过点E作交AC于点E,过点G作交AB于点Q,
,点是中点,
.
∵,
.
,
,
.
,
,
,,
,
.
由折叠的性质可知,,
,
,
.
又 ,
.
,
.
,
即,
.
,
,
综上所述,的面积为或.
故答案为:或.
本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键.
11、1
【解析】
首先证明AE=CE,根据勾股定理列出关于线段AE的方程,解方程求出AE的长问题即可解决.
【详解】
解:由题意得:∠DCA=∠ACE,
∵四边形ABCD为矩形,
∴DC//AB,∠B=90°,
∴∠DCA=∠CAE,
∴∠CAE=∠ACE,
∴AE=CE(设为x),
则BE=8-x,
由勾股定理得:x2=(8-x) 2+42,
解得:x=5,
∴S△AEC =×5×4=1,
故答案为1.
本题考查了矩形的性质、折叠的性质、勾股定理的应用等,熟练掌握和灵活运用相关的性质及定理是解题的关键.本题也要注意数形结合思想的运用.
12、1
【解析】
根据方程常数项为0,求出m的值即可.
【详解】
解:方程整理得:(m+1)x2+5x+m2-3m-1=0,
由常数项为0,得到m2-3m-1=0,即(m-1)(m+1)=0,
解得:m=1或m=-1,
当m=-1时,方程为5x=0,不合题意,舍去,
则m的值为1.
故答案为:1.
本题考查了一元二次方程的一般形式,以及一元二次方程的定义,将方程化为一般形式是解本题的关键.
13、(40﹣x)(30+3x)=3.
【解析】
试题分析:设每件童裝应降价x元,可列方程为:(40﹣x)(30+3x)=3.故答案为(40﹣x)(30+3x)=3.
考点:3.由实际问题抽象出一元二次方程;3.销售问题.
三、解答题(本大题共5个小题,共48分)
14、(1)甲图书每本价格为75元,乙图书每本价格为30元;(2)图书馆最多可以购买30本乙图书.
【解析】
(1)根据题意,可以列出相应的分式方程,从而可以求得乙种图书每本的价格;
(2)根据题意可以列出相应的不等式,从而可以求得该图书馆最多可以购买多少本甲种图书。
【详解】
解:(1)设乙图书每本价格为元,则甲图书每本价格为元.
由题意得,,
解得. 经检验,是原方程的根且符合题意.
所以甲图书每本价格为75元,乙图书每本价格为30元.
(2)设设购买乙图书本,则购买甲图书本.
由题意得,.
解得.
因为最大可以取30.
所以图书馆最多可以购买30本乙图书.
本题考查分式方程的应用、-元-次不等式的应用,解答本题的关键是明确题意,列出相应的分式方程和不等式,注意分式方程要检验
15、见解析.
【解析】
首先判定四边形OAEB是平行四边形,再由菱形的性质得出∠AOB=90°,从而判定四边形OAEB是矩形.
【详解】
证明:∵,,
∴四边形是平行四边形,
又∵四边形是菱形,
∴,
∴,
∴平行四边形是矩形.
∴四边形是矩形
本题考查了矩形的判定,菱形的性质, 掌握矩形的判定和菱形的性质是解题的关键.
16、(1)详见解析;(2)详见解析;(3).
【解析】
(1)先根据两直线平行内错角相等得出,再根据E为BD中点,和对顶角相等,根据AAS证出≌,从而证出;
(2)根据对角线互相平分的四边形是平行四边形,得出四边形ABCD是平行四边形,证出,,在结合已知条件,根据一组对边平行且相等的四边形是平行四边形,从而证出结论;
(3)根据平行四边形的对角相等得出,再根据得出,根据勾股定理得出,从而得出四边形ABDF的面积;
【详解】
证明,
,
,,
≌,
;
由可知,,
四边形ABCD是平行四边形,
,,
,
,,
四边形ABDF为平行四边形;
四边形ABDF为平行四边形,
,AF=BD=2,
,,
,
,
,
根据勾股定理可得: ,
四边形ABDF的面积.
本题考查了平行四边形的性质和判定,全等三角形的性质和判定以及勾股定理等知识点,熟练掌握相关的知识是解题的关键.
17、(1)①详见解析;②60°.(1)IH=FH;(3)EG1=AG1+CE1.
【解析】
(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.
②先证明∠ABD=1∠ADB,推出∠ADB=30°,延长即可解决问题.
(1)IH=FH.只要证明△IJF是等边三角形即可.
(3)结论:EG1=AG1+CE1.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.
【详解】
(1)①证明:如图1中,
∵四边形ABCD是矩形,
∴AD∥BC,OB=OD,
∴∠EDO=∠FBO,
在△DOE和△BOF中,
,
∴△DOE≌△BOF,
∴EO=OF,∵OB=OD,
∴四边形EBFD是平行四边形,
∵EF⊥BD,OB=OD,
∴EB=ED,
∴四边形EBFD是菱形.
②∵BE平分∠ABD,
∴∠ABE=∠EBD,
∵EB=ED,
∴∠EBD=∠EDB,
∴∠ABD=1∠ADB,
∵∠ABD+∠ADB=90°,
∴∠ADB=30°,∠ABD=60°,
∴∠ABE=∠EBO=∠OBF=30°,
∴∠EBF=60°.
(1)结论:IH=FH.
理由:如图1中,延长BE到M,使得EM=EJ,连接MJ.
∵四边形EBFD是菱形,∠B=60°,
∴EB=BF=ED,DE∥BF,
∴∠JDH=∠FGH,
在△DHJ和△GHF中,
,
∴△DHJ≌△GHF,
∴DJ=FG,JH=HF,
∴EJ=BG=EM=BI,
∴BE=IM=BF,
∵∠MEJ=∠B=60°,
∴△MEJ是等边三角形,
∴MJ=EM=NI,∠M=∠B=60°
在△BIF和△MJI中,
,
∴△BIF≌△MJI,
∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,
∴IH⊥JF,
∵∠BFI+∠BIF=110°,
∴∠MIJ+∠BIF=110°,
∴∠JIF=60°,
∴△JIF是等边三角形,
在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,
∴∠FIH=30°,
∴IH=FH.
(3)结论:EG1=AG1+CE1.
理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,
∵∠FAD+∠DEF=90°,
∴AFED四点共圆,
∴∠EDF=∠DAE=45°,∠ADC=90°,
∴∠ADF+∠EDC=45°,
∵∠ADF=∠CDM,
∴∠CDM+∠CDE=45°=∠EDG,
在△DEM和△DEG中,
,
∴△DEG≌△DEM,
∴GE=EM,
∵∠DCM=∠DAG=∠ACD=45°,AG=CM,
∴∠ECM=90°
∴EC1+CM1=EM1,
∵EG=EM,AG=CM,
∴GE1=AG1+CE1.
考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.
18、(1)(﹣,3)(2) (3)(,)或(﹣,5)或(,﹣)
【解析】
(1)由线段DE,CD的长是方程x2﹣9x+18=0的两根,且CD>DE,可求出CD、DE的长,由四边形ABCD是菱形,利用菱形的性质可求得D点的坐标.
(2)由(1)可得OB、CM,可得B、C坐标,进而求得H点坐标,由反比例函数y=(k≠0)的图象经过点H,可求的k的值;
(3)分别以CF为平行四边形的一边或者为对角线的情形进行讨论即可.
【详解】
(1)x2﹣9x+18=0,
(x﹣3)(x﹣6)=0,
x=3或6,
∵CD>DE,
∴CD=6,DE=3,
∵四边形ABCD是菱形,
∴AC⊥BD,AE=EC==3,
∴∠DCA=30°,∠EDC=60°,
Rt△DEM中,∠DEM=30°,
∴DM=DE=,
∵OM⊥AB,
∴S菱形ABCD=AC•BD=CD•OM,
∴=6OM,OM=3,
∴D(﹣,3);
(2)∵OB=DM=,CM=6﹣=,
∴B(,0),C(,3),
∵H是BC的中点,
∴H(3,),
∴k=3×=;
故答案为;
(3)
①∵DC=BC,∠DCB=60°,
∴△DCB是等边三角形,
∵H是BC的中点,
∴DH⊥BC,
∴当Q与B重合时,如图1,四边形CFQP是平行四边形,
∵FC=FB,
∴∠FCB=∠FBC=30°,
∴∠ABF=∠ABC﹣∠CBF=120°﹣30°=90°,
∴AB⊥BF,CP⊥AB,
Rt△ABF中,∠FAB=30°,AB=6,
∴FB=2=CP,
∴P(,);
②
如图2,∵四边形QPFC是平行四边形,
∴CQ∥PH,
由①知:PH⊥BC,
∴CQ⊥BC,
Rt△QBC中,BC=6,∠QBC=60°,
∴∠BQC=30°,
∴CQ=6,
连接QA,
∵AE=EC,QE⊥AC,
∴QA=QC=6,
∴∠QAC=∠QCA=60°,∠CAB=30°,
∴∠QAB=90°,
∴Q(﹣,6),
由①知:F(,2),
由F到C的平移规律可得P到Q的平移规律,则P(﹣﹣3,6﹣),即P(﹣,5);
③
如图3,四边形CQFP是平行四边形,
同理知:Q(﹣,6),F(,2),C(,3),
∴P(,﹣);
综上所述,点P的坐标为:(,)或(﹣,5)或(,﹣).
本题主要考查平行四边形、菱形的图像和性质,反比例函数的图像与性质等,综合性较大,需综合运用所学知识充分利用已知条件求解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据正方形的性质可得出面积为100、36的正方形的边长,再利用勾股定理即可求出字母A所代表的正方形的边长,此题得解.
【详解】
面积是100的正方形的边长为10,面积是36的正方形的边长为6,∴字母A所代表的正方形的边长==1.
故答案为:1.
本题考查了勾股定理以及正方形的性质,牢记“在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方”是解题的关键.
20、1
【解析】
由根与系数的关系可得a+b=﹣2,a2+2a-9=0,继而将a2+a﹣b变形为a2+2a-(a+b),然后将数值代入进行计算即可得.
【详解】
∵a,b为一元二次方程x2+2x﹣9=0的两根,
∴a+b=﹣2,a2+2a-9=0,
∴a2+2a =9,
∴a2+a﹣b=a2+2a﹣a-b=(a2+2a)-(a+b)=9+2=1,
故答案为1.
21、30°
【解析】
根据直角三角形的斜边中线性质可得OE=BE=OD,根据菱形性质可得∠DBE= ∠ABC=60°,从而得到∠OEB度数,再依据∠OED=90°-∠OEB即可.
【详解】
∵四边形ABCD是菱形,
∴O为BD中点,∠DBE=∠ABC=60°.
∵DE⊥BC,
∴在Rt△BDE中,OE=BE=OD,
∴∠OEB=∠OBE=60°.
∴∠OED=90°-60°=30°.
故答案是:30°
考查了菱形的性质、直角三角形斜边中线的性质,解决这类问题的方法是四边形转化为三角形.
22、1
【解析】
观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知,设大正方形的边长为c,大正方形的面积为13,即:,再利用勾股定理得可以得出直角三角形的面积,进而求出答案.
【详解】
解:如图所示:∵,∴,
∵,,∴,
∴小正方体的面积=大正方形的面积-4个直角三角形的面积
=,故答案为:1.
此题主要考查了勾股定理的应用,熟练应用勾股定理是解题关键.
23、乙
【解析】
根据方差的定义,方差越小数据越稳定,即可得出答案.
【详解】
解:∵甲、乙的平均成绩都是9环,方差分别是S甲2=0.8,S乙2=0.35,
∴S甲2>S乙2,
∴成绩比较稳定的是乙;
故答案为:乙.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
二、解答题(本大题共3个小题,共30分)
24、(1)10;30;(2);(3)135米.
【解析】
(1)甲的速度=(300-100)÷20=10,根据图象知道一分的时间,走了15米,然后即可求出A地提速时距地面的高度;
(2)根据甲登山的速度以及图象直接写出甲距地面高度y(米)和x(分)之间的函数关系式;
(3)求出乙提速后y和x之间的函数关系式,再与(2)联立组成方程组解答即可.
【详解】
解:(1)甲的速度为:米分,
根据图中信息知道乙一分的时间,走了15米,
那么2分时,将走30米;
故答案为:10;30;
(2);
(3)乙提速后速度为:(米秒),
由,得,
设乙提速后与的函数关系是,
把,代入得,
解得,
乙提速后与的函数关系是,
由,
解得,
(米,
答:登山6.5分钟时,乙追上了甲,此时乙距地的高度为135米.
本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,关键是正确理解题意.
25、见解析
【解析】
根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出四边形AECF是平行四边形,即可得出结论.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,且AD=BC,
∴AF∥EC,
∵BE=DF,
∴AF=EC,
∴四边形AECF是平行四边形,
∴AE=CF.
本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.
26、(1)y=,点C(6,1);(2).
【解析】
(1)点A(1,n)在直线l1:y=x+5的图象上,可求点A的坐标,进而求出反比例函数关系式,点D在反比例函数的图象上,求出点D的坐标,从而确定直线l2:y=﹣2x+b的关系式,联立求出直线l2与反比例函数的图象的交点坐标,确定点C的坐标,
(2)求出直线l2与x轴、y轴的交点B、E的坐标,利用面积差可求出△OCD的面积.
【详解】
解:(1)∵点A(1,n)在直线l1:y=x+5的图象上,
∴n=6,
∴点A(1,6)代入y=得,
k=6,
∴反比例函数y=,
当x=时,y=12,
∴点D(,12)代入直线l2:y=﹣2x+b得,
b=13,
∴直线l2:y=﹣2x+13,
由题意得:解得:,,
∴点C(6,1)
答:反比例函数解析式y=,点C的坐标为(6,1).
(2)直线l2:y=﹣2x+13,与x轴的交点E(,0)与y轴的交点B(0,13)
∴S△OCD=S△BOE﹣S△BOD﹣S△OCE
答:△OCD的面积为.
本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题、以及反比例函数与几何面积的求解,解题的关键是灵活处理反比例函数与一次函数及几何的关系.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份广西省玉林市名校2024-2025学年九上数学开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广西桂林市灌阳县2024-2025学年九年级数学第一学期开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广西北流市2024-2025学年数学九年级第一学期开学综合测试试题【含答案】,共20页。试卷主要包含了选择题,第四象限,解答题等内容,欢迎下载使用。