广东省珠海市九洲中学2024年九上数学开学检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若点在反比例函数的图像上,则下列各点一定在该图像上的是( )
A.B.C.D.
2、(4分)已知,则的值为( )
A.B.-2C.D.2
3、(4分)下列事件中,属于不确定事件的是( )
A.科学实验,前100次实验都失败了,第101次实验会成功
B.投掷一枚骰子,朝上面出现的点数是7点
C.太阳从西边升起来了
D.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形
4、(4分)若一次函数的图象上有两点,则下列大小关系正确的是( )
A.B.C.D.
5、(4分)若一次函数的图象如图所示,则不等式的解集为( )
A.B.C.D.
6、(4分)如果P点的坐标为(a,b),它关于y轴的对称点为P1,P1关于x轴的对称点为P2,已知P2的坐标为(-2,3),则点P的坐标为( )
A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)
7、(4分)如果关于的一元二次方程有实数根,那么的取值范围是( )
A.B.C.D.且
8、(4分)若有意义,则( )
A.a≤B.a<﹣1C.a≥﹣1D.a>﹣2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)因式分解:x2﹣x=______.
10、(4分)某汽车在某一直线道路上行驶,该车离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系如图所示(折线ABCDE).
根据图中提供的信息,给出下列四种说法:
①汽车共行驶了120千米;
②汽车在行驶途中停留了0.5小时;
③汽车在行驶过程中的平均速度为千米/小时;
④汽车自出发后3小时至4.5小时之间行驶的速度不变.
其中说法正确的序号分别是_____(请写出所有的).
11、(4分) “端午节”前,商场为促销定价为10元每袋的蜜枣粽子,采取如下方式优惠销售:若一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款.张阿姨现有50元钱,那么她最多能买蜜枣粽子_____袋.
12、(4分)已知,则的值是_______.
13、(4分)把直线y=﹣2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6,则直线AB的解析式为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,将四边形 的四边中点依次连接起来,得四边形到是平行四边形吗?请说明理由.
15、(8分)若抛物线上,它与轴交于,与轴交于、,是抛物线上、之间的一点,
(1)当时,求抛物线的方程,并求出当面积最大时的的横坐标.
(2)当时,求抛物线的方程及的坐标,并求当面积最大时的横坐标.
(3)根据(1)、(2)推断的横坐标与的横坐标有何关系?
16、(8分)把一个足球垂直地面向上踢,t(秒)后该足球的高度h(米)适用公式h=10t﹣5t1.
(1)经多少秒后足球回到地面?
(1)试问足球的高度能否达到15米?请说明理由.
17、(10分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?
18、(10分)化简与解方程:
(1).
(2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知,,则的值为__________.
20、(4分)方程的解为_____.
21、(4分)如图,矩形OABC中,D为对角线AC,OB的交点,直线AC的解析式为,点P是y轴上一动点,当的周长最小时,线段OP的长为______.
22、(4分)学校位于小亮家北偏东35方向,距离为300m,学校位于大刚家南偏东85°方向,距离也为300m,则大刚家相对于小亮家的位置是________.
23、(4分)学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投进篮筐的球数由小到大排序后为6,7,8,9,9,9,9,10,10,10,12,这组数据的众数和中位数分别是______________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在正方形中,点为延长线上一点且,连接,在上截取,使,过点作平分,,分别交于点、.连接.
(1)若,求的长;
(2)求证:.
25、(10分)阅读理解
在△ABC中,AB、BC、AC三边的长分别为、、2,求这个三角形的面积.
解法一:如图1,因为△ABC是等腰三角形,并且底AC=2,根据勾股定理可以求得底边的高AF为1,所以S△ABC=×2×1=1.
解法二:建立边长为1的正方形网格,在网格中画出△ABC,使△ABC三个顶点都在小正方形的顶点处,如图2所示,借用网格面积可得S△ABC=S矩形ADEC﹣S△ABD﹣S△EBC=1.
方法迁移:请解答下面的问题:
在△ABC中,AB、AC、BC三边的长分别为、、,求这个三角形的面积.
26、(12分)先化简,再求值,从-1、1、2中选择一个你喜欢的且使原式有意义的的值代入求值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
将点(-1,2)代入反比例函数,求得,再依次将各个选项代入解析式,即可求解.
【详解】
解:将点(-1,2)代入中,解得:,
∴ 反比例函数解析式为,
时,,A错误;
时,,B错误;
时,,C正确;
时,,D错误;
故选C.
本题考查反比例函数,难度一般,熟练掌握反比例函数上的点一定满足函数解析式,即可顺利解题.
2、C
【解析】
首先根据x的范围确定x−3与x−2的符号,然后即可化简二次根式,然后合并同类项即可.
【详解】
∵,
∴x−3<0,x−2<0,
∴=3−x+(2−x)=5−2x.
故选:C.
本题主要考查了二次根式的化简,化简时要注意二次根式的性质:=|a|.
3、A
【解析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、是随机事件,故A符合题意;
B、是不可能事件,故B不符合题意;
C、是不可能事件,故C不符合题意;
D、是必然事件,故D不符合题意;
故选A.
本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的
概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不
发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
4、B
【解析】
首先观察一次函数的x项的系数,当x项的系数大于0,则一次函数随着x的增大而增大,当x小于0,则一次函数随着x的减小而增大.因此只需要比较A、B点的横坐标即可.
【详解】
解:根据一次函数的解析式
可得此一次函数随着x的增大而减小
因为
根据-2<1,可得
故选B.
本题主要考查一次函数的一次项系数的含义,这是必考点,必须熟练掌握.
5、C
【解析】
直接根据图像在x轴上方时所对应的x的取值范围进行解答即可.
【详解】
由图像可知,不等式的解集为:
故答案选:C
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k≠0)在x轴上(或下)方部分所有的点的横坐标所构成的集合.
6、B
【解析】
直接利用关于x,y轴对称点的性质结合P2的坐标得出点P的坐标.
【详解】
∵P点的坐标为(a,b),它关于y轴的对称点为P1,P1关于x轴的对称点为P2,P2的坐标为(-2,3),
∴P1的坐标为:(-2,-3),故点P的坐标为:(2,-3).
故选B.
考查了关于x,y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.
7、D
【解析】
利用一元二次方程的定义和判别式的意义得到k≠0且△=(-3)2-4×k×(-1)≥0,即可得出答案.
【详解】
解:方程为一元二次方程,
.
方程有实数的解,
,
.
综合得且.
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
8、C
【解析】
直接利用二次根式的定义计算得出答案.
【详解】
若 有意义,则a+1≥0,
解得:a≥﹣1.
故选:C.
此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x(x﹣1)
【解析】分析:提取公因式x即可.
详解:x2−x=x(x−1).
故答案为:x(x−1).
点解:本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.
10、②④
【解析】
根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.
【详解】
解:由图象可知,
汽车共行驶了:120×2=240千米,故①错误,
汽车在行驶图中停留了2﹣1.5=0.5(小时),故②正确,
车在行驶过程中的平均速度为:千米/小时,故③错误,
汽车自出发后3小时至4.5小时之间行驶的速度不变,故④正确,
故答案为:②④.
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
11、6
【解析】
根据一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超据:2袋原价付款数+超过2袋的总钱数≤50,列出不等式求解即可得.
【详解】
解:设可以购买x(x为整数)袋蜜枣粽子.
,解得: ,则她最多能买蜜枣粽子是6袋.
故答案为:6.
此题考查了一元一次不等式的应用,关键是读懂题意,找出题目中的数量关系,列出不等式,注意x只能为整数.
12、
【解析】
先对原式进行化简,然后代入a,b的值计算即可.
【详解】
,
.
,
,
∴原式= ,
故答案为:.
本题主要考查二次根式的运算,掌握完全平方公式和平方差是解题的关键.
13、y=-2x+1
【解析】
分析:由题意知,直线AB的斜率,又已知直线AB上的一点(m,n),所以用直线的点斜式方程y-y0=k(x-x0)求得解析式即可.
详解:∵直线AB是直线y=-2x平移后得到的,
∴直线AB的k是-2(直线平移后,其斜率不变)
∴设直线AB的方程为y-y0=-2(x-x0) ①
把点(m,n)代入①并整理,得
y=-2x+(2m+n) ②
∵2m+n=1 ③
把③代入②,解得y=-2x+1
即直线AB的解析式为y=-2x+1.
点睛:本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后,斜率不变这一性质,再根据题意中的已知条件,来确定用哪种方程(点斜式、斜截式、两点式等)来解答.
三、解答题(本大题共5个小题,共48分)
14、四边形到是平行四边形.理由见解析.
【解析】
分析:连接一条对角线把转化成三角形的中位线来进行推理说明.
详解:四边形到是平行四边形.
理由如下:连接.
∵点是四边形 的四边中点
∴∥ ,∥
∴
∴四边形到是平行四边形
点睛:本题考查了平行四边形的判断及三角形的中位线定理的应用,三角形的中位线平行于第三边,并且等于第三边的一半.
15、(1)2;(2)-2;(3)的横坐标等于的横坐标的一半
【解析】
(1)将k=4代入化成交点式,然后将C(0,4)代入确定a的值,求得B点坐标,连接OP;设,即可求出△BCP的面积表达式,然后求最值即可.
(2)设,将代入得,得到二次函数解析式;令y=0,求出直线BC所在的直线方程;过作平行于轴,交直线于,设、,求出△BCP的面积表达式,然后求最值即可.
(3)由(1)(2)的解答过程,进行推断即可.
【详解】
解:(1)时,
由交点式得,
代入得,
∴,
∵k=4
∴B点坐标;
连,设,
时,最大值为8,
∴的横坐标为2时有最大值.
(2)当时,,
设,
代入得,
∴.
令求得,
易求直线方程为,
过作平行于轴交直线于,
设、,
面积最大值为8,
此时P的横坐标为-2.
(3)根据(1)(2)得,面积最大时的横坐标等于的横坐标的一半.
本题考查了二次函数图像的性质,解题的关键在于根据题意确定△BPC面积的表达式.
16、(1)4;(1)不能.
【解析】
求出时t的值即可得;
将函数解析式配方成顶点式,由顶点式得出足球高度的最大值即可作出判断.
【详解】
(1)当h=0时,10t﹣5t1=0,解得:t=0或t=4,
答:经4秒后足球回到地面;
(1)不能,理由如下:
∵h=10t﹣5t1=﹣5(t﹣1)1+10,
∴由﹣5<0知,当t=1时,h的最大值为10,不能达到15米,
故足球的高度不能达到15米.
本题考查了二次函数的应用,解题的关键是熟练掌握二次函数的性质及将实际问题转化为二次函数问题的能力.
17、从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.
【解析】
设年平均增长率为x,根据:2016年投入资金×(1+增长率)2=2018年投入资金,列出方程求解可得.
【详解】
解:设该地投入异地安置资金的年平均增长率为x.
根据题意得:1280(1+x)2=1280+1600.
解得x1=0.5=50%,x2=-2.5(舍去),
答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.
本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键.
18、(1);(2)x=1.
【解析】
根据分式的加减法则进行计算即可
【详解】
解:(1)原式=
=
=
= ;
(2)两边都乘以x﹣2,得:x﹣3+x﹣2=﹣3,
解得:x=1,
检验:当x=1时,x﹣2=﹣1≠0,
所以分式方程的解为x=1.
本题考查分式的加减法,掌握运算法则是解题关键
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
由,,计算可得a+b=4,ab=1,再把因式分解可得ab(a+b),整体代入求值即可.
【详解】
∵,,
∴a+b=4,ab=1
∴=ab(a+b)=4.
故答案为:4.
本题考查了因式分解的应用,正确把进行因式分解是解决问题的关键.
20、1
【解析】
根据无理方程的解法,首先,两边平方解出x的值,然后验根,解答即可.
【详解】
解:两边平方得:2x+1=x2
∴x2﹣2x﹣1=0,
解方程得:x1=1,x2=﹣1,
检验:当x1=1时,方程的左边=右边,所以x1=1为原方程的解,
当x2=﹣1时,原方程的左边≠右边,所以x2=﹣1不是原方程的解.
故答案为1.
此题考查无理方程的解,解题关键在于掌握运算法则
21、
【解析】
根据题意可以得到点A、B、C的坐标和点D的坐标,然后最短路径问题可以求得点P的坐标,从而可以求得OP的长.
【详解】
解:作点D关于y轴的对称点,连接交y轴于点P,则点P即为所求,
直线AC的解析式为,
当时,,当时,,
点A的坐标为,点C的坐标为,
点D的坐标为,点B的坐标为,
点的坐标为,
设过点B和点的直线解析式为,
,
解得,,
过点B和点的直线解析式为,
当时,,
即点P的坐标为,
.
故答案为.
本题考查一次函数的性质、矩形的性质、最短路线问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
22、北偏西25°方向距离为300m
【解析】
根据题意作出图形,即可得到大刚家相对于小亮家的位置.
【详解】
如图,根据题意得∠ACD=35°,∠ABE=85°,AC=AB=300m
由图可知∠CBE=∠BCD,
∵AB=AC,
∴∠ABC=∠ACB,
即∠ABE-∠CBE=∠ACD+∠BCD,
∴85°-∠CBE=35°+∠CBE,
∴∠CBE=25°,
∴∠ABC=∠ACB=60°,
∴△ABC为等边三角形,则BC=300m,
∴大刚家相对于小亮家的位置是北偏西25°方向距离为300m
故填:北偏西25°方向距离为300m.
此题主要考查方位角的判断,解题的关键是根据题意作出图形进行求解.
23、9;9
【解析】
【分析】根据中位数和众数定义可以分析出结果.
【详解】这组数据中9出现次数最多,故众数是9;按顺序最中间是9,所以中位数是9.
故答案为9;9
【点睛】本题考核知识点:众数,中位数.解题关键点:理解众数,中位数的定义.
二、解答题(本大题共3个小题,共30分)
24、(1)6-;(2)证明见详解
【解析】
(1)由正方形性质和等腰直角三角形性质及勾股定理即可求得结论;
(2)过点D作DM⊥CF于点M,证明△DCM≌△CBH,再证明△BHG、△DMG都是等腰直角三角形,根据等腰直角三角形斜边与直角边的数量关系即可.
【详解】
解:(1)∵ABCD是正方形
∴AB=AD=BC=CD,∠BAD=∠BAE=∠BCD=90°,
∵BF=AD=
∴AB=AD=AE=
∴BE==
∴EF=BE-BF=6-,
(2)如图,过点D作DM⊥CF于点M,则∠CDM+∠DCM=90°,
∵∠DCM+∠BCH=90°
∴∠CDM=∠BCH
∵∠BAE=90°,AB=AE
∴∠ABE=45°
∵BH⊥CF
∴∠BHC=∠CMD=90°,∠FBH=∠CBF=×(90°+45°)=67.5°
在△DCM和△CBH中,
∴△DCM≌△CBH(AAS)
∴DM=CH,CM=BH
∵BG平分∠ABF
∴∠FBG=∠ABE=22.5°
∴∠HBG=∠FBH-∠FBG=45°
∴△BHG是等腰直角三角形,
∴BH=HG,BG=BH=CM
∴CM=HG
∴CH=GM
∴DM=GM
∴△DMG是等腰直角三角形,
∴DG=GM,
∴DG+BG=GM+CM=(GM+CM)=CG
本题考查了正方形性质,等腰直角三角形判定和性质,勾股定理,全等三角形判定和性质等,解题关键是正确添加辅助线构造全等三角形.
25、S△ABC=.
【解析】
方法迁移:根据题意画出图形,△ABC的面积等于矩形EFCH的面积減去三个小直角三角形的面积;思维拓展:根据题意画出图形,△ABC的面积等于大矩形的面积减去三个小直角三角形的面积
【详解】
建立边长为1的正方形网格,在网格中画出△ABC,使△ABC三个顶点都在小正方形的顶点处,如图所示,
借用网格面积可得S△ABC=S矩形EFCH﹣S△ABE﹣S△AFC﹣S△CBH=9﹣ ×2×1﹣×3×1﹣×2×3=
此题考查勾股定理,解题关键在于利用勾股定理算出各个边长
26、4
【解析】
根据分式的运算法则即可求出答案.
【详解】
原式=
=x+2,
由分式有意义的条件可知:x=2,
∴原式=4,
本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
题号
一
二
三
四
五
总分
得分
批阅人
广东省珠海市2024-2025学年数学九上开学达标检测试题【含答案】: 这是一份广东省珠海市2024-2025学年数学九上开学达标检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省珠海市香洲区九洲中学中考一模数学试题: 这是一份2024年广东省珠海市香洲区九洲中学中考一模数学试题,共28页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年广东省珠海市九洲中学九上数学期末预测试题含答案: 这是一份2023-2024学年广东省珠海市九洲中学九上数学期末预测试题含答案,共8页。