广东省普宁市华南实验学校2024-2025学年数学九上开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,正方形在平面直角坐标系中的点和点的坐标为、,点在双曲线上.若正方形沿轴负方向平移个单位长度后,点恰好落在该双曲线上,则的值是( )
A.1B.2C.3D.4
2、(4分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能是( )
A.3.5B.4.2C.5.8D.7
3、(4分)在中,,则的度数为( )
A.B.C.D.
4、(4分)如图,ABC中,∠ACB=90°,∠ABC=22.5°,将ABC 绕着点C顺时针旋转,使得点A的对应点D落在边BC上,点B的对应点是点E,连接BE.下列说法中,正确的有( )
①DE⊥AB ②∠BCE是旋转角 ③∠BED=30° ④BDE与CDE面积之比是:1
A.1个B.2个C.3个D.4个
5、(4分)已知二次函数y=ax2+bx+c的x与y的部分对应值如下表:
下列结论:①a<1;②方程ax2+bx+c=3的解为x1=1, x2=2;③当x>2时,y<1.
其中所有正确结论的序号是( )
A.①②③B.①C.②③D.①②
6、(4分)如图,中,,,将绕点顺时针旋转得到出,与相交于点,连接,则的度数为( )
A.B.C.D.
7、(4分)计算的结果是( )
A.﹣2B.﹣1C.1D.2
8、(4分)如图,菱形ABCD中,,AB=4,则以AC为边长的正方形ACEF的周长为( )
A.14B.15C.16D.17
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若一组数据1,3,,5,4,6的平均数是4,则这组数据的中位数是__________.
10、(4分)某射手在相同条件下进行射击训练,结果如下:
该射手击中靶心的概率的估计值是______(精确到0.01).
11、(4分)不等式组的解集是_____.
12、(4分)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_____.
13、(4分)计算:_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知关于的一元二次方程
(1)若该方程有两个实数根,求的取值范围;
(2)若方程的两个实数根为,且,求的值.
15、(8分)现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.
(1)如图1,若点O与点A重合,则OM与ON的数量关系是 ;
(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;
(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?
(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)
16、(8分)如图,从电线杆离地面12m处向地面拉一条长为13m的钢缆,则地面钢缆固定点A到电线杆底部B的距离为_____.
17、(10分)如图,函数y=﹣2x+3与y=﹣x+m的图象交于P(n,﹣2).
(1)求出m、n的值;
(2)求出△ABP的面积.
18、(10分)如图,在平行四边形ABCD中,点M、N分别在线段DA、BA的延长线上,且BD=BN=DM,连接BM、DN并延长交于点P.
求证:∠P=90°﹣∠C;
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知:关于的方程有一个根是2,则________,另一个根是________.
20、(4分)若正比例函数y=kx的图象经过点(1,2),则k=_______.
21、(4分)计算: =_______________.
22、(4分)已知直线y=﹣3x+b与直线y=﹣kx+1在同一坐标系中交于点,则关于x的方程﹣3x+b=﹣kx+1的解为x=_____.
23、(4分)如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)一条笔直跑道上的A,B两处相距500米,甲从A处,乙从B处,两人同时相向匀速而跑,直到乙到达A处时停止,且甲的速度比乙大.甲、乙到A处的距离(米)与跑动时间(秒)的函数关系如图14所示.
(1)若点M的坐标(100,0),求乙从B处跑到A处的过程中与的函数解析式;
(2)若两人之间的距离不超过200米的时间持续了40秒.
①当时,两人相距200米,请在图14中画出P(,0).保留画图痕迹,并写出画图步骤;
②请判断起跑后分钟,两人之间的距离能否超过420米,并说明理由.
25、(10分)某移动通信公司推出了如下两种移动电话计费方式,
说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)
(1)请根据题意完成如表的填空;
(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;
(3)请计算说明选择哪种计费方式更省钱.
26、(12分)如图,菱形的对角线、相交于点,,,连接.
(1)求证:;
(2)探究:当等于多少度时,四边形是正方形?并证明你的结论.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
过点作轴的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交于,根据全等三角形的判定和性质,可得到点坐标和点坐标,从而求得双曲线函数未知数和平移距离.
【详解】
过点作轴的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交于.
,,,.
又,,,点坐标为
将点坐标为代入,可得=4.
与同理,可得到,,点坐标为,正方形沿轴负方向平移个单位长度后,点坐标为
将点坐标为代入,可得=2. 故选B.
本题综合考查反比例函数中未知数的求解、全等三角形的性质与判定、图形平移等知识.涉及图形与坐标系结合的问题,要学会通过辅助线进行求解.
2、D
【解析】
解:根据垂线段最短,可知AP的长不可小于3
∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=1,
∴AP的长不能大于1.
∴
故选D.
3、D
【解析】
由四边形ABCD是平行四边形,根据平行四边形的对角相等,易得∠C=∠A=38°.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠C=∠A=38°.
故选:D.
此题考查了平行四边形的性质:平行四边形的对角相等.
4、C
【解析】
延长ED交AB于点F,连接AD,根据直角三角形两锐角互余可得∠BAC=67.5°,根据旋转的性质可得∠BCE=∠ACD=90°,∠BCE是旋转角,CD=AC,CE=CB,∠CED=交ABC=22.5°,继而可得 ∠AFE=90°,即DE⊥AB,可得∠DAC=∠ADC=45°,∠CBE=∠CEB=45°,AD=,从而可得 ∠BAD=22.5°,∠BED=22.5°,从而可得 BD=AD=CD,得到BDE与CDE面积之比是:1,据此即可得出正确答案.
【详解】
延长ED交AB于点F,连接AD,
∵∠ACB=90°,∠ABC=22.5°,
∴∠BAC=90°-∠ABC=67.5°,
∵将ABC 绕着点.顺时针旋转,使得点A的对应点D落在边BC上,点B的对应点是点E,
∴∠BCE=∠ACD=90°,∠BCE是旋转角,CD=AC,CE=CB,∠CED=∠ABC=22.5°,
∴∠CED+∠BAC=90°,∴∠AFE=90°,即DE⊥AB,
∵∠BCE=∠ACD=90°,CD=AC,CE=CB,
∴∠DAC=∠ADC=45°,∠CBE=∠CEB=45°,AD=,
∴∠BAD=67.5°-45°=22.5°,∠BED=∠BEC-∠DEC=45°-22.5°=22.5°,
∴∠BAD=∠ABD,
∴BD=AD=CD,
∴BDE与CDE面积之比是BD:CD=:1,
综上可知,正确的是①②④,共3个,
故选C.
本题考查了旋转的性质,勾股定理、等腰直角三角形的判定与性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
5、D
【解析】
根据表格数据求出二次函数的对称轴为直线x=1,然后根据二次函数的性质对各小题分析判断即可得解.
【详解】
解:①由图表中数据可知:x=−1和3时,函数值为−3,所以,抛物线的对称轴为直线x=1,而x=1时,y=5最大,所以二次函数y=ax2+bx+c开口向下,a<1;故①正确;
②∵二次函数y=ax2+bx+c的对称轴为x=1,在(1,3)的对称点是(2,3),∴方程ax2+bx+c=3的解为x1=1,x2=2;故②正确;
③∵二次函数y=ax2+bx+c的开口向下,对称轴为x=1,(1,3)的对称点是(2,3),∴当x>2时,y<3;故③错误;
所以,正确结论的序号为①②
故选D.
本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,有一定难度.熟练掌握二次函数图象的性质是解题的关键.
6、C
【解析】
由旋转的性质可得AC=A'C,∠ACA'=40°,∠BAC=∠B'A'C=90°,由等腰三角形的性质可得∠AA'C=70°=∠A'AC,即可求解.
【详解】
∵将△ABC绕点C顺时针旋转40°得到△A′B′C,
∴△ABC≌△A′B′C
∴AC=A′C,∠ACA′=40∘,∠BAC=∠B′A′C=90°,
∴∠AA′C=70°=∠A′AC
∴∠B′A′A=∠B′A′C−∠AA′C=20°
故选C.
此题考查旋转的性质,等腰三角形的性质,解题关键在于得出得∠AA'C=70°=∠A'AC.
7、C
【解析】
直接利用二次根式的性质化简得出答案.
【详解】
.解:.
故选:C.
此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.
8、C
【解析】
根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=1,求出即可:
∵四边形ABCD是菱形,∴AB=BC.
∵∠B=60°,∴△ABC是等边三角形.∴AC=AB=1.
∴正方形ACEF的周长是AC+CE+EF+AF=1×1=2.故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4.5
【解析】
根据题意可以求得x的值,从而可以求的这组数据的中位数.
【详解】
解:∵数据1、3、x、5、4、6的平均数是4,
∴
解得:x=5,
则这组数据按照从小到大的顺序排列为:1,3,4,5,5,6
则中位数为
故答案为:4.5
本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.
10、0.1.
【解析】
根据表格中实验的频率,然后根据频率即可估计概率.
【详解】
解:由击中靶心频率都在0.1上下波动,
∴该射手击中靶心的概率的估计值是0.1.
故答案为:0.1.
本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.
11、x≤1
【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.
【详解】
解:
解不等式①得:x≤1,
解不等式②得:x<7,
∴不等式组的解集是x≤1,
故答案为:x≤1.
本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.
12、
【解析】
试题分析:根据菱形的对角线互相垂直平分求出OA=4、OB=3,再利用勾股定理列式求出AB=5,然后根据△AOB的面积列式得,解得OH=.
故答案为.
点睛:此题主要考查了菱形的性质,解题时根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式求出AB,然后根据△AOB的面积列式计算即可得解.
13、
【解析】
先计算二次根式的乘法,然后进行化简,最后合并即可.
【详解】
原式.
故答案为:.
本题考查了二次根式的混合运算,掌握各种知识点的运算法则是解答本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)符合条件的的值为
【解析】
(1)根据一元二次方程根的判别式即可求解;
(2)根据根与系数的关系与完全平方公式的变形即可求解.
【详解】
解:(1),
,得
(2),
,则
,
∴符合条件的的值为
此题主要考查一元二次方程的应用,解题的关键是熟知一元二次方程根的判别式及根与系数的关系.
15、(1)OM=ON;(2)成立.(3)O在移动过程中可形成线段AC;(4)O在移动过程中可形成线段AC.
【解析】
试题分析:(1)根据△OBM与△ODN全等,可以得出OM与ON相等的数量关系;
(2)连接AC、BD,则通过判定△BOM≌△CON,可以得到OM=ON;
(3)过点O作OE⊥BC,作OF⊥CD,可以通过判定△MOE≌△NOF,得出OE=OF,进而发现点O在∠C的平分线上;
(4)可以运用(3)中作辅助线的方法,判定三角形全等并得出结论.
试题解析:(1)若点O与点A重合,则OM与ON的数量关系是:OM=ON;
(2)仍成立.
证明:如图2,连接AC、BD.
由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°.∵∠MON=90°,∴∠BOM=∠CON,在△BOM和△CON中,∵∠OBM=∠OCN,BO=CO,∠BOM=∠CON,∴△BOM≌△CON(ASA),∴OM=ON;
(3)如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°.又∵∠C=90°,∴∠EOF=90°=∠MON,∴∠MOE=∠NOF.
在△MOE和△NOF中,∵∠OEM=∠OFN,∠MOE=∠NOF,OM=ON,∴△MOE≌△NOF(AAS),∴OE=OF.
又∵OE⊥BC,OF⊥CD,∴点O在∠C的平分线上,∴O在移动过程中可形成线段AC;
(4)O在移动过程中可形成直线AC.
考点:四边形综合题;全等三角形的判定与性质;角平分线的性质;探究型;操作型;压轴题.
16、5m.
【解析】
根据勾股定理即可得到结果.
【详解】
解:在Rt△ABC中BC=12,AC=13,AB2+BC2=AC2
∴AB2=AC2-BC2=132-122=25
∴AB=5
答:地面钢缆固定点A到电线杆底部B的距离为5米.
考点:本题考查勾股定理的应用
点评:解答本题的关键是熟练掌握勾股定理:直角三角形的两直角边的平方和等于斜边的平方.
17、(1),;(2).
【解析】
(1)先把P(n,-2)代入y=-2x+3即可得到n的值,从而得到P点坐标为(,-2),然后把P点坐标代入y=-x+m可计算出m的值;
(2)解方程确定A,B点坐标,然后根据三角形面积公式求解.
【详解】
(1)∵与图象交于点,
∴将代入得到,
再将代入中得到.
(2)∵交轴于点,
∴令得,
∴.
∵交轴于点,
∴令得,
∴.
∴.
∴.
本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.
18、证明见解析.
【解析】
分析:首先过点B作BF⊥PD于点F,过点D作DG⊥BP于点G,BF与DG交于点H,由BD=BN=DM,可得BF与DG是∠DBN、∠MDB的平分线,又由四边形内角和为360°,可得∠P+∠FHG=180°,继而可得∠DHB=∠FHG=180°-∠P=90°+∠C,则可证得结论.
详解:证明:过点B作BF⊥PD于点F,过点D作DG⊥BP于点G,BF与DG交于点H,
∴∠FHG+∠P=180°,
∴∠DHB+∠P=180°,
∴∠DHB=180°﹣∠P,
∵BD=BN=DM,
∴BF与DG是∠DBN、∠MDB的平分线,
∴由四边形内角和为360°,可得∠P+∠FHG=180°,
∵∠DHB=180°﹣(∠GDB+∠FBD)=180°﹣(180°﹣∠DAB)=90°﹣∠DAB,
∵四边形ABCD是平行四边形,
∴∠DAB=∠C,
∴∠DHB=90°﹣∠C,
∵∠DHB=180°﹣∠P,
∴180°﹣∠P=90°+∠C,
∴∠P=90°﹣∠C;
点睛:此题考查了平行四边形的性质、三角形内角和及外角的性质、角平分线的性质等知识.此题综合性较强,难度较大,解题的关键是准确作出辅助线,注意掌握数形结合思想与方程思想的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2, 1.
【解析】
设方程x2-3x+a=0的另外一个根为x,根据根与系数的关系,即可解答.
【详解】
解:设方程的另外一个根为,
则,,
解得:,,
故答案为:2,1.
本题主要考查了根与系数的关系及一元二次方程的解,属于基础题,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=-p,x1x2=q.
20、2
【解析】
由点(2,2)在正比例函数图象上,根据函数图象上点的坐标特征即可得出关于k的一元一次方程,解方程即可得出k值.
【详解】
∵正比例函数y=kx的图象经过点(2,2),
∴2=k×2,即k=2.
故答案为2.
本题考查了一次函数图象上点的坐标特征,解题的关键是得出2=k×2.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用一次函数图象上点的坐标特征求出一次函数的系数是关键.
21、1
【解析】
根据实数的性质化简即可求解.
【详解】
=1+2=1
故答案为:1.
此题主要考查实数的运算,解题的关键是熟知零指数幂与负指数幂的运算.
22、1
【解析】
由题意可知当x=1时,函数y=﹣1x+b的值与函数y=﹣kx+1的值相等,由此即可得答案.
【详解】
∵直线y=﹣1x+b与直线y=﹣kx+1在同一坐标系中交于点,
∴当x=1时,函数y=﹣1x+b的值与函数y=﹣kx+1的值相等,
∴关于x的方程﹣1x+b=﹣kx+1的解为x=1,
故答案为:1.
本题考查了一次函数与一元一次方程,熟知两条直线交点的横坐标使两个函数的值相等是解题的关键.
23、
【解析】
分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM=1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.
【详解】
解:过点E作ME⊥AD,延长ME交BC与N,
∵四边形ABCD是矩形
∴AD∥BC,且ME⊥DA
∴EN⊥BC 且∠A=90°=∠ABC=90°
∴四边形ABNM是矩形
∴AB=MN=5,AM=BN
若ME:EN=1:4,如图1
∵ME:EN=1:4,MN=5
∴ME=1,EN=4
∵折叠
∴BE=AB=5,AP=PE
在Rt△BEN中,BN==3
∴AM=3
在Rt△PME中,PE2=ME2+PM2
AP2=(3﹣AP)2+1
解得AP=
若ME:EN=4:1,则EN=1,ME=4,如 图2
在Rt△BEN中,BN==2
∴AM=2
在Rt△PME中,PE2=ME2+PM2
AP2=(2﹣AP )2+16
解得AP=
若点E在矩形外,如图
∵EN:EM=1:4
∴EN=,EM=
在Rt△BEN中,BN==
∴AM=
在Rt△PME中,PE2=ME2+PM2
AP2=(AP﹣)2+()2
解得:AP=5
故答案为,,5.
本题考查矩形的性质、折叠的性质和勾股定理,注意分情况讨论是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)①见解析;②起跑后分钟,两人之间的距离不能超过米,理由见解析.
【解析】
(1)设乙从B处跑到A处的过程中y与x的函数关系式为y=kx+b,把(0,10)和(100,0)代入求出k,b的值即可,
(2)①设,两直线相交于点.过点作轴的垂线,交直线于点,
在射线上截取,使过点作轴的垂线,则垂足即为所求点.
②由两人有相距200到相遇用时1秒,由a>b,,起跑后分钟(即秒),两人处于相遇过后,但乙未到达处,则计算乙在90秒内离开B距离比较即可.
【详解】
(1)设
把分别代入,可求得
∴解析式为
(2)如图:
设,两直线相交于点.
步骤为: .
①过点作轴的垂线,交直线于点
②在射线上截取,使
③过点作轴的垂线,则垂足即为所求点.
(3)起跑后分钟,两人之间的距离不能超过米.
理由如下:
由题可设
∵两人之间的距离不超过米的时间持续了秒,
∴可设当或时,两人相距为米.
∴相遇前,当时,,即
也即①.
相遇后,当时,
即
也即②.
把①代入②,可得
解得
当两人相遇时,,即
即,解得x=1.
∵甲的速度比乙大,所以,可得
∴起跑后分钟(即秒),两人处于相遇过后,但乙未到达处.
∴两人相距为
∵,
∴两人之间的距离不能超过米.
本题为一次函数图象问题,考查了一次函数图象性质、方程和不等式有关知识,解答关键是根据条件构造方程或不等式解决问题.
25、(1)70;100;(2)详见解析;(3)当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.
【解析】
(1)根据题意得出表中数据即可;
(2)根据分段计费的费用就可以得出各个时段各种不同的付费方法就可以得出结论;
(3)分别求出几种情况下时x的取值范围,根据x的取值范围即可选择计费方式.
【详解】
解:(1)由题意可得:月主叫时间500分钟时,方式一收费为70元;月主叫时间800分钟时,方式二收费为100元,
故答案为:70;100;
(2)由题意可得:y1(元)的函数关系式为:
;
y2(元)的函数关系式为:
;
(3)①当0≤t≤300时方式一更省钱;
②当300<t≤600时,若两种方式费用相同,则当0.2t﹣30=50,
解得:t=400,
即当t=400,两种方式费用相同,
当300<t≤400时方式一省钱,
当400<t≤600时,方式二省钱;
③当t>600时,若两种方式费用相同,则当0.2t﹣30=0.25t﹣100,
解得:t=1400,
即当t=1400,两种方式费用相同,当600<t≤1400时方式二省钱,
当t>1400时,方式一省钱;
综上所述,当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.
本题考查了一次函数的应用,难度中等.得到两种计费方式的关系式是解决本题的关键,注意在列式时应保证单位的统一.
26、(1)见解析;(2)当时,四边形OCED为正方形,见解析.
【解析】
(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,由矩形的性质可得OE=DC;
(2)当∠ABC=90°时,四边形OCED是正方形,根据正方形的判定方法证明即可.
【详解】
解:(1)证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是菱形,
∴∠COD=90°,
∴四边形OCED是矩形,
∴OE=DC;
(2)当∠ABC=90°时,四边形OCED是正方形,
理由如下:
∵四边形ABCD是菱形,∠ABC=90°,
∴四边形ABCD是正方形,
∴DO=CO,
又∵四边形OCED是矩形,
∴四边形OCED是正方形.
本题考查了菱形的性质,矩形的判定与性质,正方形的判定和性质,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
x
…
-3
-2
-1
1
1
3
…
y
…
-27
-13
-3
3
5
-3
…
月使用费/元
主叫限定时间/分钟
主叫超时费(元/分钟)
方式一
30
600
0.20
方式二
50
600
0.25
月主叫时间500分钟
月主叫时间800分钟
方式一收费/元
130
方式二收费/元
50
广东省揭阳市普宁市普宁市占陇华南学校2024年数学九上开学综合测试模拟试题【含答案】: 这是一份广东省揭阳市普宁市普宁市占陇华南学校2024年数学九上开学综合测试模拟试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省云浮市名校九上数学开学教学质量检测试题【含答案】: 这是一份2024-2025学年广东省云浮市名校九上数学开学教学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省深圳实验学校九上数学开学质量检测模拟试题【含答案】: 这是一份2024-2025学年广东省深圳实验学校九上数学开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。