2024-2025学年广东省惠来县九上数学开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A、B,把正方形沿箭头方向推,使点D落在y轴的正半轴上的点处,则点C的对应点的坐标为( )
A.B.C.D.
2、(4分)下列定理中,没有逆定理的是( )
A.两直线平行,同位角相等
B.全等三角形的对应边相等
C.全等三角形的对应角相等
D.在角的内部,到角的两边距离相等的点在角的平分线上
3、(4分)如图,在中,对角线、相交于点,且,,则的度数为( )
A.35°B.40°C.45°D.55°
4、(4分)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是( )
A.4B.6C.8D.10
5、(4分)下列各式中,正确的是( )
A.2<<3B.3<<4C.4<<5D.14<<16
6、(4分)已知,,是一次函数图象上不同的两个点,若,则的取值范围是( )
A.B.C.D.
7、(4分)若正多边形的一个外角是,则该正多边形的内角和为( )
A.B.C.D.
8、(4分)如果代数式能分解成形式,那么k的值为( )
A.9B.﹣18C.±9D.±18
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为____________.
10、(4分)在矩形ABCD中,点A关于∠B的平分线的对称点为E,点E关于∠C的平分线的对称点为F.若AD=AB=2,则AF2=_____.
11、(4分)如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长_____.
12、(4分)多项式因式分解后有一个因式为,则的值为_____.
13、(4分)已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平行四边形AECF中,B,D是直线EF上的两点,BE=DF,连接AB,BC,AD,DC.求证:四边形ABCD是平行四边形.
15、(8分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(小时),两车之间的距离为(千米),图中的折线表示与的函数关系.
信息读取:
(1)甲、乙两地之间的距离为__________千米;
(2)请解释图中点的实际意义;
图像理解:
(3)求慢车和快车的速度;
(4)求线段所示的与之间函数关系式.
16、(8分)如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米到达F处,又测得电视塔顶端A的仰角为60°,求这个电视塔的高度AB.(参考数据).
17、(10分)已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).
(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;
(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;
(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.
18、(10分)在“6.26”国际禁毒日到来之际,为了普及禁毒知识,提高市民禁毒意识,某区发放了一批“关爱生命,拒绝毒品”的宣传资料.据统计,甲小区共收到宣传资料350份,乙小区共收到宣传资料100份,甲小区住户比乙小区住户的3倍多25户,若两小区每户平均收到资料的数量相同.求这两小区各有多少户住户?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)当_____________时,在实数范围内有意义.
20、(4分)如图,矩形中,,,是边上一点,连接,将沿翻折,点的对应点是,连接,当是直角三角形时,则的值是________
21、(4分)在平行四边形ABCD中,若∠A=70°,则∠C的度数为_________.
22、(4分)要使有意义,则x的取值范围是_________.
23、(4分)已知x1,x2,x3的平均数=10,方差s2=3,则2x1,2x2,2x3的平均数为__________,方差为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,,,是的垂直平分线.
(1)求证:是等腰三角形.
(2)若的周长是,,求的周长.(用含,的代数式表示)
25、(10分)某商场统计了每个营业员在某月的销售额,绘制了如下的条形统计图以及不完整的扇形统计图:
解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x<20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.则扇形统计图中的a=_____,b=_____.
(2)所有营业员月销售额的中位数和众数分别是多少?
(3)为了调动营业员的积极性,决定制定一个月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得营业员的半数左右能获奖,奖励标准应定为多少万元?并简述其理由.
26、(12分)解方程: +x=1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由已知条件得到AD′=AD=2,AO=1,AB=2,根据勾股定理得到,于是得到结论.
【详解】
解:∵AD′=AD=2,
,
∴,
∵C′D′=2,C′D′∥AB,
∴C′(2, ),
故选A.
本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.
2、C
【解析】
写出各个定理的逆命题,判断是否正确即可.
【详解】
解:两直线平行,同位角相等的逆命题是同位角相等,两直线平行,正确,A有逆定理;
全等三角形的对应边相等的逆命题是对应边相等的两个三角形全等,正确,B有逆定理;
全等三角形的对应角相等的逆命题是对应角相等的两个三角形全等,错误,C没有逆定理;
在角的内部,到角的两边距离相等的点在角的平分线上的逆命题是角的平分线上的点到角的两边距离相等,正确,D有逆定理;
故选:C.
本题考查的是命题与定理,属于基础知识点,比较简单.
3、A
【解析】
由在中,对角线、相交于点,且可推出是矩形,可得∠DAB=90°进而可以计算的度数.
【详解】
解:在中
∵
∴AC=BD
∵在中, AC=BD
∴是矩形
所以∠DAB=90°
∵
∴
故选A
本题考查的是矩形的判定和性质.掌握是矩形的判定和性质是解题的关键.
4、C
【解析】
∵CE∥BD,DE∥AC,
∴四边形CODE是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD=4,OA=OC,OB=OD,
∴OD=OC=AC=2,
∴四边形CODE是菱形,
∴四边形CODE的周长为:4OC=4×2=1.
故选C.
5、B
【解析】
试题解析:
故选B.
6、D
【解析】
根据可得出与异号,进而得出,解之即可得出结论.
【详解】
,
与异号,
,解得:.
故选:.
本题考查了一次函数的性质,熟练掌握“当时,随的增大而减小”是解题的关键.
7、C
【解析】
根据正多边形的外角度数求出多边形的边数,根据多边形的内角和公式即可求出多边形的内角和.
【详解】
由题意,正多边形的边数为,
其内角和为.
故选C.
考查多边形的内角和与外角和公式,熟练掌握公式是解题的关键.
8、B
【解析】
利用完全平方公式的结构特征判断即可确定出k的值.
【详解】
解:∵=(x-9)2,
∴k=-18,
故选:B.
此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据平行四边形的性质,可得出AD∥BC,则∠AEB=∠CBE,再由∠ABE=∠CBE,则∠AEB=∠ABE,则AE=AB,从而求出DE.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AEB=∠CBE,
∵∠B的平分线BE交AD于点E,
∴∠ABE=∠CBE,
∴∠AEB=∠ABE,
∴AE=AB,
∵AB=3,BC=5,
∴DE=AD-AE=BC-AB=5-3=1.
故答案为1.
本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.
10、40﹣16
【解析】
由AD=AB=2,可求得AB=2,AD=2,又由在矩形ABCD中,点A关于角B的角平分线的对称点为E,点E关于角C的角平分线的对称点为F,根据轴对称的性质,可求得BE,CF的长,继而求得DF的长,然后由勾股定理求得答案.
【详解】
∵AD=AB=2,
∴AB=2,AD=2,
∵四边形ABCD是矩形,
∴BC=AD=2,CD=AB=2,
∵在矩形ABCD中,点A关于角B的角平分线的对称点为E,点E关于角C的角平分线的对称点为F,
∴BE=AB=2,
∴CF=CE=BC﹣BE=2﹣2,
∴DF=CD﹣CF=4﹣2,
∴AF2=AD2+DF2=(2)2+(4﹣2)2=40﹣16.
故答案为:40﹣16;
此题考查了矩形的性质、轴对称的性质以及勾股定理.解题关键在于注意掌握轴对称图形的对应关系.
11、1
【解析】
根据平行四边形的性质知,AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE和∠COF是对顶角相等,所以△OAE≌△OCF,所以OF=OE=1.5,CF=AE,所以四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF,由此就可以求出周长.
【详解】
解:∵四边形ABCD平行四边形,
∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,
∴△OAE≌△OCF,
∴OF=OE=1.5,CF=AE,
∴四边形EFCD的周长=ED+CD+CF+OF+OE
=ED+AE+CD+OE+OF
=AD+CD+OE+OF
=4+5+1.5+1.5
=1.
故答案为1.
本题利用了平行四边形的性质和已知条件先证出△OAE≌△OCF,再全等三角形的性质,转化边的关系后再求解.
12、5
【解析】
根据十字相乘的进行因式分解即可得出答案.
【详解】
根据题意可得:
∴
∴k=5
故答案为5.
本题考查的是因式分解,难度适中,需要熟练掌握因式分解的步骤.
13、1
【解析】
根据OB和OC分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DO,OE=EC.然后即可得出答案.
【详解】
解:∵在△ABC中,OB和OC分别平分∠ABC和∠ACB,
∴∠DBO=∠OBC,∠ECO=∠OCB,
∵DE∥BC,
∴∠DOB=∠OBC=∠DBO,∠EOC=∠OCB=∠ECO,
∴DB=DO,OE=EC,
∵DE=DO+OE,
∴DE=BD+CE=1.
故答案为1.
此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证DB=DO,OE=EC,难度不大,是一道基础题.
三、解答题(本大题共5个小题,共48分)
14、见解析.
【解析】
连接AC交BD与点O.由四边形AECF是平行四边形,可证OA=OC,OE=OF,又BE=DF,所以OB=OD,根据对角线互相平分的四边形是平行四边形可证结论成立.
【详解】
证明:连接AC交BD与点O.
∵四边形AECF是平行四边形,
∴OA=OC,OE=OF,
∵BE=DF,
∴OE+BE=OF+DF,
∴OB=OD,
∴四边形ABCD是平行四边形.
本题主要考查了平行四边形的判定,平行四边形的判定方法有:①两组对边分别平行的四边形是平行四边形;②一组对边平行且相等的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤.两组对角分别相等的四边形是平行四边形.
15、(1)900;(2)当两车出发4小时时相遇;(3)慢车的速度是75千米/时,快车的速度是150千米/时;(4)y=225x﹣900(4≤x≤6).
【解析】
(1)根据已知条件和函数图象可以直接写出甲、乙两地之间的距离;
(2)根据题意可以得到点B表示的实际意义;
(3)根据图象和题意可以分别求出慢车和快车的速度;
(4)根据题意可以求得点C的坐标,由图象可以得到点B的坐标,从而可以得到线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围.
【详解】
(1)由图象可得:甲、乙两地之间的距离为900千米.
故答案为900;
(2)图中点B的实际意义时当两车出发4小时时相遇;
(3)由题意可得:慢车的速度为:900÷12=75,快车的速度为:(900﹣75×4)÷4=150,即慢车的速度是75千米/时,快车的速度是150千米/时;
(4)由题可得:点C是快车刚到达乙地,∴点C的横坐标是:900÷150=6,纵坐标是:900﹣75×6=450,即点C的坐标为(6,450),设线段BC对应的函数解析式为y=kx+b.
∵点B(4,0),点C(6,450),∴,得:,即线段BC所表示的y与x之间的函数关系式是y=225x﹣900(4≤x≤6).
本题考查了一次函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答,注意最后要写出自变量x的取值范围.
16、87.6米
【解析】
根据题意并结合图象运用解直角三角形中的勾股定理进行分析求解即可.
【详解】
解:由题意结合图象,
∵,
∴,
∵米,
∴CE=AE=100米,米,
∴AG (米),
∵米,
∴AB86.6+1=87.6(米).
本题考查解直角三角形的应用,解题的关键是根据仰角构造直角三角形,利用三角函数求解.
17、(1)8;(2)145°;(3)详见解析.
【解析】
(1)作AD x轴于D,BE⊥x轴于E,由点A,B的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;
(2)作CH∥x轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;
(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.
【详解】
解:(1)作ADx轴于D,BEx轴于E,如图1,
∵A(﹣2,2)、B(4,4),
∴AD=OD=2,BE=OE=4,DE=6,
∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=×(2+4)×6﹣×2×2﹣×4×4=8;
(2)作CH // x轴,如图2,
∵D(0,﹣4),M(4,﹣4),
∴DM // x轴,
∴CH // OG // DM,
∴∠AOG=∠ACH,∠DEC=∠HCE,
∴∠DEC+∠AOG=∠ACB=90°,
∴∠DEC=90°﹣55°=35°,
∴∠CEF=180°﹣∠DEC=145°;
(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,
而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,
∴∠NEC=∠HEC,
∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,
∵∠HEC=90°﹣∠AOG,
∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.
本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.
18、甲小区住户有175户,乙小区住户有50户
【解析】
设乙小区住户为x户,则甲小区住户有:(3x+25)户,根据每户平均收到资料的数量相同,列出方程,解答即可.
【详解】
解:设乙小区住户为x户,
根据题意得:,
解得:,
经检验是原方程的解,
∴甲小区住户,
所以,甲小区住户有175户,乙小区住户有50户.
本题考查了分式方程的实际应用,解题的关键是找到题目中的关系,列出分式方程.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、a≥1
【解析】
根据二次根式有意义的条件可得a-1≥0,再解不等式即可.
【详解】
由题意得:a-1≥0,
解得:a≥1,
故答案为: a≥1.
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
20、3或1
【解析】
分两种情况讨论:①当∠AFE=90°时,易知点F在对角线AC上,设DE=x,则AE、EF均可用x表示,在Rt△AEF中利用勾股定理构造关于x的方程即可;②当∠AEF=90°时,易知F点在BC上,且四边形EFCD是正方形,从而可得DE=CD.
【详解】
解:当E点与A点重合时,∠EAF的角度最大,但∠EAF小于90°,
所以∠EAF不可能为90°,
分两种情况讨论:
①当∠AFE=90°时,如图1所示,
根据折叠性质可知∠EFC=∠D=90°,
∴A、F、C三点共线,即F点在AC上,
∵四边形ABCD是矩形,
∴AC=,
∴AF=AC−CF=AC−CD=10−1=4,
设DE=x,则EF=x,AE=8−x,
在Rt△AEF中,利用勾股定理可得AE2=EF2+AF2,
即(8−x)2=x2+42,
解得x=3,即DE=3;
②当∠AEF=90°时,如图2所示,则∠FED=90°,
∵∠D=∠BCD=90°,DE=EF,
∴四边形EFCD是正方形,
∴DE=CD=1,
故答案为:3或1.
本题主要考查了翻折变换,以矩形为背景考查了勾股定理、折叠的对称性,同时考查了分类讨论思想,解决这类问题首先清楚折叠能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列方程求出答案.
21、70°
【解析】
在平行四边形ABCD中,∠C=∠A,则求出∠A即可.
【详解】
根据题意在平行四边形ABCD中,根据对角相等的性质得出∠C=∠A,
∵∠A=70°,
∴∠C=70°.
故答案为:70°.
此题考查平行四边形的性质,解题关键在于利用平行四边形的性质解答.
22、.
【解析】
根据二次根式有意义的条件即可解答.
【详解】
∵有意义,
∴2x+5≥0,
解得,.
故答案为:.
本题考查了二次根式有意义的条件,熟知二次根式有意义被开方数为非负数是解决问题的关键.
23、20 12
【解析】
∵=10,
∴=10,
设2,2,2的方差为,
则=2×10=20,
∵ ,
∴
=
=4×3=12.
故答案为20;12.
点睛:本题考查了当数据加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)a+b
【解析】
(1)首先由等腰三角形ABC得出∠B,然后由线段垂直平分线的性质得出∠CDB,即可判定;
(2)由等腰三角形BCD,得出AB,然后即可得出其周长.
【详解】
(1)∵,
∴
∵是的垂直平分线
∴
∴
∵是的外角
∴
∴
∴
∴是等腰三角形;
(2)∵,的周长是
∴
∵
∴
∴的周长.
此题主要考查线段垂直平分线的性质以及等腰三角形的判定与性质,熟练掌握,即可解题.
25、(1)10;60;(2)中位数为21、众数为20;(3)奖励标准应定为21万元,理由见解析
【解析】
试题分析:
(1)由统计图中的信息可知:不称职的有2人,占总数的6.7%,由此可得总人数为:2÷6.7%=30(人);而条形统计图中的信息显示:优秀的有3人,称职的有18人,由此可得3÷30×100%=10%,18÷30×100%=60%,即a=10,b=60;
(2)由条形统计图可知,这组数据的众数为20,中位数是按大小排列后的第15和16个数据的平均数,而由第15和16个数据都是21可知中位数是21;
(3)由题意可知:奖励标准应该定为21万元,因为由(2)可知,这组数据的中位数是21万,因此按要使一半左右的人获得奖励,应该以中位数作为奖励的标准.
试题解析:
(1)由统计图中信息可得:该商场进入统计的营业员总数=2÷6.7%=30(人);
∵优秀的有3人,
∴a%=3÷30×100%=10%,
∴a=10;
∵称职的有18人,
∴b%=18÷30×100%=60%,
∴b=60;
(2)由条形统计图可知,这组数据的众数为20;
由条件下统计图可知,这30个数据按从小到大排列后,第15个数和第16个数都是21,
∴这组数据的中位数为21;
(3)∵要使一半左右的人获得奖励,
∴奖励标准应该以中位数为准,
∴奖励标准应定为21万元.
点睛:这是一道综合应用条形统计图和扇形统计图中的信息来解决相关问题的统计图,解题的关键是弄清两幅统计图中数据间的对应关系,再进行细心计算即可.
26、x=2
【解析】
解:.
移项整理为,
两边平方,
整理得 ,
解得:,.
经检验:是原方程的解,是原方程的增根,舍去,
∴原方程的解是.
题号
一
二
三
四
五
总分
得分
2024-2025学年广东省茂名电白区七校联考数学九上开学教学质量检测试题【含答案】: 这是一份2024-2025学年广东省茂名电白区七校联考数学九上开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省江门市恩平市九上数学开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年广东省江门市恩平市九上数学开学教学质量检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省宝塔实验九上数学开学复习检测试题【含答案】: 这是一份2024-2025学年广东省宝塔实验九上数学开学复习检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。