终身会员
搜索
    上传资料 赚现金

    甘肃省白银市靖远七中学2024年九年级数学第一学期开学达标检测模拟试题【含答案】

    立即下载
    加入资料篮
    甘肃省白银市靖远七中学2024年九年级数学第一学期开学达标检测模拟试题【含答案】第1页
    甘肃省白银市靖远七中学2024年九年级数学第一学期开学达标检测模拟试题【含答案】第2页
    甘肃省白银市靖远七中学2024年九年级数学第一学期开学达标检测模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    甘肃省白银市靖远七中学2024年九年级数学第一学期开学达标检测模拟试题【含答案】

    展开

    这是一份甘肃省白银市靖远七中学2024年九年级数学第一学期开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列所给图形中,既是中心对称图形,又是轴对称图形的是( )
    A.B.C.D.
    2、(4分)已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是( )
    A.1B.﹣1C.0D.无法确定
    3、(4分)如图,平行四边形的对角线和相交于点为边中点,,则的长为( )
    A.B.C.D.
    4、(4分)不等式组的最小整数解是( )
    A.0B.-1C.1D.2
    5、(4分)每千克m元的糖果x千克与每千克n元的糖果y千克混合成杂拌糖,则这种杂拌糖每千克的价格为 ( )
    A.元B.元C.元D.元
    6、(4分)数名射击运动员的第一轮比赛成绩如下表所示,则他们本轮比赛的平均成绩是( )
    A.7.8环B.7.9环C.8.1环D.8.2环
    7、(4分)正方形具有而矩形不一定具有的性质是 ( )
    A.对角线互相垂直B.对角线互相平分
    C.对角线相等D.四个角都是直角
    8、(4分)计算的的结果是( )
    A.B.C.4D.16
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在△ABC中,∠A=∠B,D是AB边上任意一点DE∥BC,DF∥AC,AC=5cm,则四边形DECF的周长是_____.
    10、(4分)若分式值为0,则的值为__________.
    11、(4分)如图,直线与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.
    12、(4分)如图,的对角线相交于点,点分别是线段的中点,若厘米,的周长是厘米,则__________厘米.
    13、(4分)化简的结果为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)利用我们学过的知识,可以导出下面这个等式:

    该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.
    (1)请你展开右边检验这个等式的正确性;
    (2)利用上面的式子计算:

    15、(8分)2019年4月25日至27日,第二届“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议。我国准备将地的茶叶1000吨和地的茶叶500吨销往“一带一路”沿线的地和地,地和地对茶叶需求分别为900吨和600吨,已知从、两地运茶叶到、两地的运费(元/吨)如下表所示,设地运到地的茶叶为吨,
    (1)用含的代数式填空:地运往地的茶叶吨数为___________,地运往地的茶叶吨数为___________,地运往地的茶叶吨数为___________.
    (2)用含(吨)的代数式表示总运费(元),并直接写出自变量的取值范围;
    (3)求最低总运费,并说明总运费最低时的运送方案.
    16、(8分)如图,直线分别与轴、轴交于点,;直线分别与轴交于点,与直线交于点,已知关于的不等式的解集是.
    (1)分别求出,,的值;
    (2)求.
    17、(10分)如图,在平面直角坐标系xOy中,矩形ABCD的边AD=3,A(,0),B(2,0),直线y=kx+b(k≠0)经过B,D两点.
    (1)求直线y=kx+b(k≠0)的表达式;
    (2)若直线y=kx+b(k≠0)与y轴交于点M,求△CBM的面积.
    18、(10分)已知:正方形ABCD和等腰直角三角形AEF,AE=AF(AE<AD),连接DE、BF,P是DE的中点,连接AP。将△AEF绕点A逆时针旋转。
    (1)如图①,当△AEF的顶点E、F恰好分别落在边AB、AD时,则线段AP与线段BF的位置关系为 ,数量关系为 。
    (2)当△AEF绕点A逆时针旋转到如图②所示位置时,证明:第(1)问中的结论仍然成立。
    (3)若AB=3,AE=1,则线段AP的取值范围为 。
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知:在矩形ABCD中,AD=2AB,点E在直线AD上,连接BE,CE,若BE=AD,则∠BEC的大小为_____度.
    20、(4分)计算:﹣=_____.
    21、(4分)如图,正方形的边长为,点,分别在边,上,若是的中点,且,则的长为_______.
    22、(4分)直角三角形两条边的长度分别为3cm,4cm,那么第三条边的长度是_____cm.
    23、(4分)如图,在中,,是线段的垂直平分线,若,则用含的代数式表示的周长为____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)把下列各式因式分解.
    (1)
    (2)
    25、(10分)为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台价格,月处理污水量极消耗费如下表:
    经预算,该企业购买设备的资金不高于105万元.
    ⑴ 请你为企业设计几种购买方案.
    ⑵ 若企业每月产生污水2040吨,为了节约资金,应选那种方案?
    26、(12分)如图,四边形 ABCD 是正方形,点 E是 BC边上任意一点, AEF 90°,且EF 交正方形外角的平分线 CF 于点 F.求证:AE=EF.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    利用中心对称图形与轴对称图形定义判断即可.
    【详解】
    解:A是中心对称图形,不是轴对称图形,故此选项不符合题意;
    B不是中心对称图形,是轴对称图形,故此选项不符合题意;
    C是中心对称图形,也是轴对称图形,故正确;
    D是中心对称图形,不是轴对称图形,故此选项不符合题意
    故选:C
    此题考查了中心对称图形,轴对称图形,熟练掌握各自的性质是解本题的关键.
    2、B
    【解析】
    解:根据题意得:(m﹣1)+1+1=0,
    解得:m=﹣1.
    故选B
    3、B
    【解析】
    先证明是的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.
    【详解】
    的对角线、相交于点,

    点是的中点,

    是的中位线,

    .
    故选:.
    本题考查了平行四边形的性质、三角形中位线定理,熟练掌握平行四边形的性质,证出是的中位线是解决问题的关键.
    4、A
    【解析】
    解:解不等式组 可得,
    在这个范围内的最小整数为0,
    所以不等式组的最小整数解是0,
    故选A
    5、B
    【解析】
    解:由题意可得杂拌糖总价为mx+ny,总重为x+y千克,那么杂拌糖每千克的价格为元.故选B.
    6、C
    【解析】
    由题意可知:这些运动员本轮比赛的平均成绩为(环).故选C.
    7、A
    【解析】
    试题分析:正方形四个角都是直角,对角线互相垂直平分且相等;矩形四个角都是直角,对角线互相平分且相等.
    考点:(1)、正方形的性质;(2)、矩形的性质
    8、C
    【解析】
    根据算术平方根和平方根进行计算即可
    【详解】
    =4
    故选:C
    此题考查算术平方根和平方根,掌握运算法则是解题关键
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、10cm
    【解析】
    求出BC,求出BF=DF,DE=AE,代入得出四边形DECF的周长等于BC+AC,代入求出即可.
    【详解】
    解:∵∠A=∠B,
    ∴BC=AC=5cm,
    ∵DF∥AC,
    ∴∠A=∠BDF,
    ∵∠A=∠B,
    ∴∠B=∠BDF,
    ∴DF=BF,
    同理AE=DE,
    ∴四边形DECF的周长为:CF+DF+DE+CE=CF+BF+AE+CE=BC+AC=5cm+5cm=10cm,
    故答案为10cm.
    本题考查了平行线的性质,等腰三角形的性质和判定,关键是求出BF=DF,DE=AE.
    10、-1
    【解析】
    根据分式值为0的条件进行求解即可.
    【详解】
    由题意得,x+1=0,
    解得x=-1,
    故答案为:-1.
    本题考查了分式值为0的条件,熟练掌握分式值为0时,分子为0且分母不为0是解题的关键.
    11、
    【解析】
    根据直线于坐标轴交点的坐标特点得出,A,B两点的坐标,得出OB,OA的长,根据C是OB的中点,从而得出OC的长,根据菱形的性质得出DE=OC=2;DE∥OC;设出D点的坐标,进而得出E点的坐标,从而得出EF,OF的长,在Rt△OEF中利用勾股定理建立关于x的方程,求解得出x的值,然后根据三角形的面积公式得出答案.
    【详解】
    解: 把x=0代入 y = − x + 4 得出y=4,
    ∴B(0,4);
    ∴OB=4;
    ∵C是OB的中点,
    ∴OC=2,
    ∵四边形OEDC是菱形,
    ∴DE=OC=2;DE∥OC,
    把y=0代入 y = − x + 4 得出x=,
    ∴A(,0);
    ∴OA=,
    设D(x,) ,
    ∴E(x,- x+2),
    延长DE交OA于点F,
    ∴EF=-x+2,OF=x,
    在Rt△OEF中利用勾股定理得:,
    解得 :x1=0(舍),x2=;
    ∴EF=1,
    ∴S△AOE=·OA·EF=2.
    故答案为.
    本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.
    12、
    【解析】
    先由平行四边形的性质求出OA+OB的值,再由的周长是厘米,求出AB的值,然后根据三角形的中位线即可求出EF的值.
    【详解】
    ∵四边形ABCD是平行四边形,厘米,
    ∴OA+OB=12厘米,
    ∵的周长是厘米,
    ∴AB=20-12=8厘米,
    ∵点分别是线段的中点,
    ∴EF是的中位线,
    ∴EF=AB=4厘米.
    故答案为:4.
    本题考查了平行四边形的性质,三角形中位线的判定与性质. 三角形的中位线平行于第三边,并且等于第三边的一半.
    13、x
    【解析】
    先把两分数化为同分母的分数,再把分母不变,分子相加减即可.
    【详解】

    故答案为x.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)1.
    【解析】
    (1)根据完全平方公式和合并同类项的方法可以将等式右边的式子进行化简,从而可以得出结论;
    (2)根据题目中的等式可以求得所求式子的值.
    【详解】
    解:(1)[(a-b)2+(b-c)2+(c-a)2]
    =(a2-2ab+b2+b2-2bc+c2+a2-2ac+c2)
    =×(2a2+2b2+2c2-2ab-2bc-2ac)
    =a2+b2+c2-ab-bc-ac,
    故a2+b2+c2-ab-bc-ac=[(a-b)2+(b-c)2+(c-a)2]正确;
    (2)20182+20192+20202-2018××2020-2018×2020
    =×[()2+(2019-2020)2+(2020-2018)2]
    =×(1+1+4)
    =×6
    =1.
    本题考查因式分解的应用,解答本题的关键是明确题意,熟练掌握完全平方公式并能灵活运用.
    15、(1),,;(2);(3)由地运往地400吨,运往地600吨;由地运往地500吨时运费最低
    【解析】
    (1)从A地运往C地x吨,A地有1000吨,所以只能运往D地(1000-x)吨;C地需要900吨,那么B地运往C地(900-x),D地需要600吨,那么运往D(x-400)吨;
    (2)根据总运费=A地运往C地运费+A地运往D地运费+B地运往C地运费+B地运往D地运费代入数值或字母可得;
    (3)根据(2)中得到的一次函数关系式,结合函数的性质和取值范围确定总运费最低方案。
    【详解】
    (1),,
    (2)
    ( )
    (3)∵,
    ∴随的增大而增大。

    ∴当时,最小.
    ∴由地运往地400吨,运往地600吨;
    由地运往地500吨时运费最低。
    本题考查了一次函数的应用,题目较为复杂,理清题中数量关系是解(2)题的关键,利用了一次函数的增减性,结合自变量x的取值范围是解(3)题的关键。
    16、(1),,;(2)
    【解析】
    (1)首先利用待定系数法确定直线的解析式,然后根据关于x的不等式的解集是得到点D的權坐标为,再将x=代入y=x+3,得:;将x=代入y=1-m求得m=1即可
    (2)先确定直线与x轴的交点坐标,然后利用三角形的面积公式计算即可
    【详解】
    解:(1)∵直线分别与轴、轴交于点,,

    解得:,,
    ∵关于的不等式的解集是,
    ∴点的横坐标为,
    将代入,得:,
    将,代入,
    解得:;
    (2)对于,令,得:,
    ∴点的坐标为,
    ∴.
    本题考查了一次函数与一元一次不等式的关系及数形结合思想的应用,解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合。
    17、(1)y=-2x+4;(2)S△BCM=1.
    【解析】
    (1)利用矩形的性质,得出点D坐标,再利用待定系数法求得函数解析式;
    (2)由三角形的面积公式,即可解答.
    【详解】
    (1)∵在矩形ABCD中,AD=1,A(,0),B(2,0),
    ∴D(,1),C(2,1).
    把B(2,0),D(,1)代入y=kx+b(k≠0)得:,解得:,
    ∴直线表达式为:y=-2x+4;
    (2)连接CM.
    ∵B(2,0),
    ∴OB=2.
    ∴S△BCM=∙BC∙OB=×1×2=1.
    本题主要考查待定系数法求一次函数解析式以及矩形的性质,掌握待定系数法,是解题的关键.
    18、(1)AP⊥BF,(2)见解析;(3)1≤AP≤2
    【解析】
    (1)根据直角三角形斜边中线定理可得 ,即△APD为等腰三角形推出∠DAP=∠EDA,可证△AED≌△ABF可得∠ABF=∠EDA=∠DAP 且 BF=ED由三角形内角和可得∠AOF=90°即AP⊥BF由全等可得 即
    (2)延长AP至Q点使得DQ∥AE,PA延长线交于G点,利用P是DE中点,构造△AEP≌△PDQ可得∠EAP=∠PQD,DQ=AE=FA可得∠QDA=∠FAB可证△FAB≌△QDA 得到∠AFB=∠PQD=∠EAP,AQ=FB由三角形内角和可得∠FAG=90°得出AG⊥FB即AP⊥BF由全等可得
    (3)由于 即求BF的取值范围,当BF最小时,即F在AB上,此时BF=2,AP=1
    当BF最大时,即F在BA延长线上,此时BF=4,AP=2可得1≤AP≤2
    【详解】
    (1)
    根据直角三角形斜边中线定理有AP是△AED中线可得 ,即△APD为等腰三角形。
    ∴∠DAP=∠EDA
    又AE=AF,∠BAF=∠DAE=90°,AB=AD
    ∴△AED≌△ABF
    ∴∠ABF=∠EDA=∠DAP 且 BF=ED
    设AP与BF相交于点O
    ∴∠ABF+∠AFB=90°=∠DAP+∠AFB
    ∴∠AOF=90°即AP⊥BF
    ∴ 即
    故答案为:AP⊥BF,
    (2)
    延长AP至Q点使得DQ∥AE,PA延长线交于G点
    ∴∠EAP=∠PQD,∠AEP=∠QDP
    ∵P是DE中点,
    ∴EP=DP
    ∴△AEP≌△PDQ
    则∠EAP=∠PQD,DQ=AE=FA
    ∠QDA=180°-(∠PAD+∠PQD)
    =180°-∠EAD
    而∠FAB=180°-∠EAD,则∠QDA=∠FAB
    ∵AF=DQ,∠QDA=∠FAB ,AB=AD
    ∴△FAB≌△QDA
    ∴∠AFB=∠PQD=∠EAP,AQ=FB
    而∠EAP+∠FAG=90°
    ∴∠AFB+∠FAG=90°
    ∴∠FAG=90°
    ∴AG⊥FB
    即AP⊥BF


    (3)∵
    ∴即求BF的取值范围
    BF最小时,即F在AB上,此时BF=2,AP=1
    BF最大时,即F在BA延长线上,此时BF=4,AP=2
    ∴ 1≤AP≤2
    掌握三角形全等以及直角三角形斜边上的中线,灵活运用各种角关系是解题的关键。
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、75或1
    【解析】
    分两种情况:①当点E在线段AD上时,BE=AD,由矩形的性质得出BC=AD=BE=2AB,∠BAE=90°,AD∥BC,得出BE=2AB,∠BEC=∠BCE,∠CBE=∠AEB,得出AB= BE,证出∠AEB=30°,得出∠CBE=30°,即可得出结果;②点E在DA延长线上时,BE=AD,同①得出∠AEB=30°,由直角三角形的性质得出∠ABE=60°,求出∠CBE=90°+60°=10°,即可得出结果.
    【详解】
    解:分两种情况:
    ①当点E在线段AD上时,BE=AD,如图1所示:
    ∵四边形ABCD为矩形,
    ∴BC=AD=BE=2AB,∠BAE=90°,AD∥BC,
    ∴BE=2AB,∠BEC=∠BCE,∠CBE=∠AEB,
    ∴AB=BE,
    ∴∠AEB=30°,
    ∴∠CBE=30°,
    ∴∠BEC=∠CBE=(180°﹣30°)=75°;
    ②点E在DA延长线上时,BE=AD,如图2所示:
    ∵四边形ABCD为矩形,
    ∴BC=AD=BE=2AB,∠ABC=∠BAE=∠BAD=90°,
    ∴BE=2AB,∠BEC=∠BCE,
    ∴AB=BE,
    ∴∠AEB=30°,
    ∴∠ABE=60°,
    ∴∠CBE=90°+60°=10°,
    ∴∠BEC=∠BCE=(180°﹣10°)=1°;
    故答案为:75或1.
    本题考查了矩形的性质、直角三角形的性质、平行线的性质、等腰三角形的性质等知识;熟练掌握矩形的性质,进行分类讨论是解题的关键.
    20、
    【解析】
    根据二次根式的性质,进行计算即可解答
    【详解】
    解:﹣.
    故答案为:﹣ .
    此题考查二次根式的化简,解题关键在于掌握运算法则
    21、4
    【解析】
    延长F至G,使CG=AE,连接DG,由SAS证明△ADE≌△CDG,得出DE=DG,∠ADE=∠CDG,再证明△EDF≌△GDF,得出EF=GF,设AE=CG=x,则EF=GF=3+x,在Rt△BEF中,由勾股定理得出方程,解方程得出AE=2,从而求得BE的长即可.
    【详解】
    解:延长F至G,使CG=AE,连接DG、EF,如图所示:
    ∵四边形ABCD是正方形,
    ∴AD=AB=BC=CD=6,∠A=∠B=∠DCF=∠ADC=90°,
    ∴∠DCG=90°,
    在△ADE和△CDG中,,
    ∴△ADE≌△CDG(SAS),
    ∴DE=DG,∠ADE=∠CDG,
    ∴∠EDG=∠CDE+∠CDG=∠CDE+∠ADE=90°,
    ∵∠EDF=45°,
    ∴∠GDF=45°,
    在△EDF和△GDF中,,
    ∴△EDF≌△GDF(SAS),
    ∴EF=GF,
    ∵F是BC的中点,
    ∴BF=CF=3,
    设AE=CG=x,则EF=GF=CF+CG=3+x,
    在Rt△BEF中,由勾股定理得:,
    解得:x=2,即AE=2,
    ∴BE=AB-AE=6-2=4.
    此题考查了正方形的性质,全等三角形的判定与性质以及勾股定理,利用了方程的思想,证明三角形全等是解本题的关键.
    22、5或
    【解析】
    利用分类讨论的思想可知,此题有两种情况:一是当这个直角三角形的两直角边分别为、时;二是当这个直角三角形的一条直角边为,斜边为.然后利用勾股定理即可求得答案.
    【详解】
    当这个直角三角形的两直角边分别为、时,
    则该三角形的斜边的长为:(),
    当这个直角三角形的一条直角边为,斜边为时,
    则该三角形的另一条直角边的长为:().
    故答案为或.
    此题主要考查学生对勾股定理的理解和掌握,注意分类讨论是解题关键.
    23、2a+3b
    【解析】
    由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AD=BD=BC=b,从而可求△ABC的周长.
    【详解】
    解:∵AB=AC,
    CD=a,AD=b,
    ∴AC=AB=a+b,
    ∵DE是线段AB的垂直平分线,
    ∴AD=BD=b,
    ∴∠DBA=∠BAC=36°,
    ∵∠BAC=36°,
    ∴∠ABC=∠ACB=72°,
    ∴∠DBC=∠ABC−∠DBA=36°,
    ∴∠BDC=180°−∠ACB−∠CBD=72°,
    ∴BD=BC=b,
    ∴△ABC的周长为:AB+AC+BC=2a+3b.
    故答案为:2a+3b.
    本题考查线段垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AD=BD=BC,本题属于中等题型.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)
    【解析】
    (1)先提取,再利用完全平方公式即可求解;
    (2)先化简,再利用完全平方公式和平方差公式即可求解.
    【详解】
    解:(1)原式
    (2)原式

    此题主要考查因式分解,解题的关键是熟知因式分解的方法.
    25、(1)有三种购买方案:方案一:不买A型,买B型10台,方案二,买A型1台,B型9台,方案三,买A型2台,B型8台;(2)为了节约资金应购买A型1台,B型9台,即方案二.
    【解析】
    (1)设购买污水处理设备A型x台,则B型(10-x)台,列出不等式求解即可,x的值取正整数;
    (2)根据企业每月产生的污水量为2040吨,列出不等式求解,再根据x的值选出最佳方案.
    【详解】
    解:(1)设购买污水处理设备A型x台,则B型(10-x)台,根据题意得

    解得0≤x≤,
    ∵x为整数,
    ∴x可取0,1,2,
    当x=0时,10-x=10,
    当x=1,时10-x=9,
    当x=2,时10-x=8,
    即有三种购买方案:
    方案一:不买A型,买B型10台,
    方案二,买A型1台,B型9台,
    方案三,买A型2台,B型8台;
    (2)由240x+200(10-x)≥2040
    解得x≥1
    由(1)得1≤x≤
    故x=1或x=2
    当x=1时,购买资金12×1+10×9=102(万元)
    当x=2时,购买资金12×2+10×8=104(万元)
    ∵104>102
    ∴为了节约资金应购买A型1台,B型9台,即方案二.
    本题考查不等式组在现实生活中的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出不等式关系式是解题关键.
    26、见解析
    【解析】
    截取BE=BM,连接EM,求出AM=EC,得出∠BME=45°,求出∠AME=∠ECF=135°,求出∠MAE=∠FEC,根据ASA推出△AME和△ECF全等即可.
    【详解】
    证明:在AB上截取BM=BE,连接ME,
    ∵∠B=90°,
    ∴∠BME=∠BEM=45°,
    ∴∠AME=135°
    ∵CF是正方形ABCD的外角的角平分线,
    ∴∠ECF=90°+∠DCF=90°+=135°=∠ECF,
    ∵AEF 90°
    ∴∠AEB+=90°
    又∠AEB+=90°,

    ∵AB=BC,BM=BE,
    ∴AM=EC,
    在△AME和△ECF中

    ∴△AME≌△ECF(ASA),
    ∴AE=EF.
    本题考查了正方形的性质,全等三角形的性质和判定,角平分线的定义,关键是推出△AME≌△ECF.
    题号





    总分
    得分
    批阅人
    环数/环
    7
    8
    9
    10
    人数/人
    4
    2
    3
    1
    35
    40
    30
    45

    相关试卷

    2024年甘肃省白银市靖远七中学数学九年级第一学期开学监测模拟试题【含答案】:

    这是一份2024年甘肃省白银市靖远七中学数学九年级第一学期开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年甘肃省靖远县数学九年级第一学期开学经典模拟试题【含答案】:

    这是一份2024-2025学年甘肃省靖远县数学九年级第一学期开学经典模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年甘肃省甘南数学九年级第一学期开学达标检测模拟试题【含答案】:

    这是一份2024-2025学年甘肃省甘南数学九年级第一学期开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map