东省济宁市金乡县2025届九上数学开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列计算正确的是( )
A.a3•a2=a6B.(a3)4=a7C.3a2﹣2a2=a2D.3a2×2a2=6a2
2、(4分)下列计算正确的是( )
A.×=4B.+=C.÷=2D.=﹣15
3、(4分)若,则下列不等式一定成立的是( ).
A.B.C.D.
4、(4分)如图,把Rt△ABC绕顶点C顺时针旋转90°得到Rt△DFC,若直线DF垂直平分AB,垂足为点E,连接BF,CE,且BC=2,下面四个结论:①BF=;②∠CBF=45°;③△BEC的面积=△FBC的面积;④△ECD的面积为,其中正确的结论有( )
A.1个B.2个C.3个D.4个
5、(4分)已知一元二次方程x2-2x-m=0有两个实数根,那么m的取值范围是( )
A.B.C.D.
6、(4分)下列各式不能用平方差公式法分解因式的是( )
A.x2﹣4B.﹣x2﹣y2C.m2n2﹣1D.a2﹣4b2
7、(4分)要反映台州市某一周每天的最高气温的变化趋势,宜采用( )
A.条形统计图B.扇形统计图
C.折线统计图D.频数分布统计图
8、(4分)如图,在中,分别是边的中点.已知,则四边形的周长为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)函数y=的自变量x的取值范围为____________.
10、(4分)已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣3,x2=4,则m+n=_____.
11、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是,,,,在本次射击测试中,成绩最稳定的是_____.
12、(4分)如图,小丽在打网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网3米的位置上,已知她的击球高度是2.4米,则她应站在离网________米处.
13、(4分)一组数据5,7,2,5,6的中位数是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)长方形纸片中,,,把这张长方形纸片如图放置在平面直角坐标系中,在边上取一点,将沿折叠,使点恰好落在边上的点处.
(1)点的坐标是____________________;点的坐标是__________________________;
(2)在上找一点,使最小,求点的坐标;
(3)在(2)的条件下,点是直线上一个动点,设的面积为,求与的函数 关系式.
15、(8分)如图,平行四边形ABCD的对角线AC,BD交于点O,过点B作BP∥AC,过点C作CP∥BD,BP与CP相交于点P.
(1)判断四边形BPCO的形状,并说明理由;
(2)若将平行四边形ABCD改为菱形ABCD,其他条件不变,得到的四边形BPCO是什么四边形,并说明理由;
(3)若得到的是正方形BPCO,则四边形ABCD是 .(选填平行四边形、矩形、菱形、正方形中你认为正确的一个)
16、(8分)如图,在正方形中,点、是正方形内两点,,,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:
(1)在图1中,连接,且
①求证:与互相平分;
②求证:;
(2)在图2中,当,其它条件不变时,是否成立?若成立,请证明:若不成立,请说明理由.
(3)在图3中,当,,时,求之长.
17、(10分)如图,在中,点,分别在,延长线上,,.
(1)求证:四边形是平行四边形
(2)若,,求的长.
18、(10分)因式分解:am2﹣6ma+9a.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直角边分别为3,4的两个直角三角形如图摆放,M,N为斜边的中点,则线段MN的长为_____.
20、(4分)已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是_____.
21、(4分)从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:
根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).
22、(4分)阅读下面材料:
在数学课上,老师提出如下问题:
已知:如图,及边的中点.
求作:平行四边形.
①连接并延长,在延长线上截取;
②连接、.
所以四边形就是所求作的平行四边形.
老师说:“小敏的作法正确.
请回答:小敏的作法正确的理由是__________.
23、(4分)在中,,,,则斜边上的高为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如由图1可以得到(a+1b)(a+b)=a1+3ab+1b1.请回答下列问题:
(1)写出图1中所表示的数学等式:_____________.
(1)利用(1)中所得的结论,解决下列问题:已知a+b+c=11,ab+bc+ac=38,求a1+b1+c1的值;
(3)图3中给出了若干个边长为a和边长为b的小正方形纸片及若干个长为b、宽为a的长方形纸片.
①请按要求利用所给的纸片拼出一个几何图形,并画在所给的方框内,要求所拼的几何图形的面积为1a1+5ab+1b1;
②再利用另一种计算面积的方法,可将多项式1a1+5ab+1b1分解因式,即1a1+5ab+1b1=________.
25、(10分)如图,在四边形ABCD中,AD//BC,∠A=∠C,CD=2AD,BE⊥AD于点E,F为CD的中点,连接EF、BF.
(1)求证:四边形ABCD是平行四边形;
(2)求证:BF平分∠ABC;
(3)请判断△BEF的形状,并证明你的结论.
26、(12分)在学校组织的知识竞赛活动中,老师将八年级一班和二班全部学生的成绩整理并绘制成如下统计表:
(1)现已知一班和二班的平均分相同,请求出其平均分.
(2)请分别求出这两班的中位数和众数,并进一步分析这两个班级在这次竞赛中成绩的情况.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据同底数幂乘法、幂的乘方、整式加减法和乘法运算法则进行分析.
【详解】
A. a3•a2=a5,本选项错误;
B. (a3)4=a12,本选项错误;
C. 3a2﹣2a2=a2,本选项正确;
D. 3a2×2a2=6a4,本选项错误.
故选C
本题考核知识点:整式运算.解题关键点:掌握整式运算法则.
2、C
【解析】
试题分析:A、,故A选项错误;
B、+不能合并,故B选项错误;
C、.故C选项正确;
D、=15,故D选项错误.
故选C.
考点:1.二次根式的乘除法;2.二次根式的性质与化简;3.二次根式的加减法.
3、C
【解析】
按照不等式的性质逐项排除即可完成解答.
【详解】
∵x>y
∴,A错误;
3x>3y,B错误;
,即C正确;
,错误;
故答案为C;
本题考查了不等式的基本性质,即给不等式两边同加或减去一个整数,不等号方向不变;给不等式两边同乘以一个正数,不等号方向不变;给不等式两边同乘以一个负数,不等号方向改变;
4、C
【解析】
根据旋转的性质得到△BCF为等腰直角三角形,故可判断①②,根据三角形的面积公式即可判断③,根据直线DF垂直平分AB可得EH是△ABC的中位线,各科求出EH的长,再根据三角形的面积公式求出△ECD的面积即可判断④.
【详解】
∵把Rt△ABC绕顶点C顺时针旋转90°得到Rt△DFC,
∴CB=FC,∠BCF=90°,∴△BCF为等腰直角三角形,故∠CBF=45°,②正确;
∵BC=2,∴FC=2,∴BF==,①正确;
过点E作EH⊥BD,
∵△BEC和△FBC的底都为BC,高分别为EH和FC,且EH≠FC,
∴△BEC的面积≠△FBC的面积,③错误;
∵直线DF垂直平分AB,
∴AF=BF=,∴CD=AC=2+
∵直线DF垂直平分AB,
则E为AB中点,又AC⊥BC,EH⊥BC,∴EH是△ABC的中位线,
∴EH=AC=1+,
△ECD的面积为×CD×EH=,故④正确,
故选C.
此题主要考查旋转的性质,解题的关键是熟知全等三角形的性质、垂直平分线的性质、三角形中位线的判定与性质.
5、B
【解析】
根据根的判别式,令△≥0即可求出m的取值范围.
【详解】
解:∵一元二次方程x2-2x-m=0有两个实数根,
∴△≥0,即(-2)2-4×(-m) ≥0,
∴m≥-1.
故选B.
本题考查了根的判别式.
6、B
【解析】
利用平方差公式的结构特征判断即可.
【详解】
解:下列各式不能用平方差公式法分解因式的是-x2-y2,
故选:B.
本题考查了用平方差公式进行因式分解,熟练掌握是解题的关键.
7、C
【解析】
根据题意,得
要求直观反映长沙市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.
故选C.
8、C
【解析】
根据三角形中位线定理、线段中点的定义解答.
【详解】
解:∵D,E分别是边BC,CA的中点,
∴DE=AB=2,AF=AB=2,
∵D,F分别是边BC,AB的中点,
∴DF=AC=3,AE=AC=3,
∴四边形AFDE的周长=AF+DF+DE+AE=2+3+2+3=10,
故选:C.
本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x≥-1
【解析】
试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.
考点:函数自变量的取值范围.
10、-1
【解析】
根据根与系数的关系得出-3+4=-m,-3×4=n,求出即可.
【详解】
解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣3,x2=4,
∴﹣3+4=﹣m,﹣3×4=n,
解得:m=﹣1,n=﹣12,
∴m+n=﹣1,
故答案为:﹣1.
本题考查了根与系数的关系的应用,能根据根与系数的关系得出-3+4=-m,-3×4=n是解此题的关键.
11、丙
【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是0.90,1.22,0.43,1.68,
∴S2丙
本题考查方差的意义,方差越大,数据的波动越大;方差越小,数据波动越小,学生们熟练掌握即可.
12、6
【解析】
由题意可得,△ABE∽△ACD,故,由此可求得AC的长,那么BC的长就可得出.
【详解】
解:如图所示:
已知网高,击球高度,,
由题意可得,
∴
∴,
∴,
∴她应站在离网6米处.
故答案为:6.
本题考查了相似三角形的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
13、1
【解析】
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
【详解】
解:将数据从小到大排列2,1,1,6,7,
因此中位数为1.
故答案为1
本题考查了中位数,正确理解中位数的意义是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)(0,3);(﹣4,0);(2);(3)
【解析】
(1)根据折叠性质求出BF,再利用勾股定理求出CF,从而得出OF,在△EOF中设未知数的方法根据勾股定理列出方程求解即可.
(2)作E关于AB的对称点,连接对称点到F,利用勾股定理求出长度即可.
(3)利用待定系数法求出PF的表达式,再根据面积公式代入即可.
【详解】
(1)由折叠的性质可得BF=AB=10,
∵BC=8,∠BCF=90°,
∴CF=,
∵OC=AB=10,
∴OF=10-6=4,即F的坐标为(﹣4,0),
设AE为x,则EF也为x,EO为8-x,
根据勾股定理得:42+(8-x)2=x2,解得x=1.
∴EO=8-1=3,即E的坐标为(0,3).
(2)作E关于AB的对称点E’,连接E’F交AB于P,此时E’F即为PE+PF最小值.
根据对称性可知AE’=AE=1,则OE’=1+8=13,
根据勾股定理可得:E’F=.
(3)根据题意可得S=.
设直线PF的表达式为:y=kx+13,
将点F(﹣4,0)代入,解得k=,
∴PF的表达式为:,
∴
本题考查一次函数与几何的动点问题,关键在于熟练掌握此类型辅助线的做法.
15、(1)四边形BPCO为平行四边形;(2)四边形BPCO为矩形;(3)四边形ABCD是正方形
【解析】
试题分析:(1)根据两组对边互相平行,即可得出四边形BPCO为平行四边形;
(2)根据菱形的对角线互相垂直,即可得出∠BOC=90°,结合(1)结论,即可得出四边形BPCO为矩形;
(3)根据正方形的性质可得出OB=OC,且OB⊥OC,再根据平行四边形的性质可得出OD=OB,OA=OC,进而得出AC=BD,再由AC⊥BD,即可得出四边形ABCD是正方形.
解:(1)四边形BPCO为平行四边形,理由如下:
∵BP∥AC,CP∥BD,
∴四边形BPCO为平行四边形.
(2)四边形BPCO为矩形,理由如下:
∵四边形ABCD为菱形,
∴AC⊥BD,则∠BOC=90°,
由(1)得四边形BPCO为平行四边形,
∴四边形BPCO为矩形.
(3)四边形ABCD是正方形,理由如下:
∵四边形BPCO是正方形,
∴OB=OC,且OB⊥OC.
又∵四边形ABCD是平行四边形,
∴OD=OB,OA=OC,
∴AC=BD,
又∵AC⊥BD,
∴四边形ABCD是正方形.
16、(1)①详见解析;②详见解析;(1)当BE≠DF时,(BE+DF)1+EF1=1AB1仍然成立,理由详见解析;(3)
【解析】
(1)①连接ED、BF,证明四边形BEDF是平行四边形,根据平行四边形的性质证明;②根据正方形的性质、勾股定理证明;
(1)过D作DM⊥BE交BE的延长线于M,连接BD,证明四边形EFDM是矩形,得到EM=DF,DM=EF,∠BMD=90°,根据勾股定理计算;
(3)过P作PE⊥PD,过B作BELPE于E,根据(1)的结论求出PE,结合图形解答.
【详解】
(1)证明:①连接ED、BF,
∵BE∥DF,BE=DF,
∴四边形BEDF是平行四边形,
∴BD、EF互相平分;
②设BD交EF于点O,则OB=OD=BD,OE=OF=EF.
∵EF⊥BE,
∴∠BEF=90°.
在Rt△BEO中,BE1+OE1=OB1.
∴(BE+DF)1+EF1=(1BE)1+(1OE)1=4(BE1+OE1)=4OB1=(1OB)1=BD1.
在正方形ABCD中,AB=AD,BD1=AB1+AD1=1AB1.
∴(BE+DF)1+EF1=1AB1;
(1)解:当BE≠DF时,(BE+DF)1+EF1=1AB1仍然成立,
理由如下:如图1,过D作DM⊥BE交BE的延长线于M,连接BD.
∵BE∥DF,EF⊥BE,
∴EF⊥DF,
∴四边形EFDM是矩形,
∴EM=DF,DM=EF,∠BMD=90°,
在Rt△BDM中,BM1+DM1=BD1,
∴(BE+EM)1+DM1=BD1.
即(BE+DF)1+EF1=1AB1;
(3)解:过P作PE⊥PD,过B作BE⊥PE于E,
则由上述结论知,(BE+PD)1+PE1=1AB1.
∵∠DPB=135°,
∴∠BPE=45°,
∴∠PBE=45°,
∴BE=PE.
∴△PBE是等腰直角三角形,
∴BP=BE,
∵BP+1PD=4 ,
∴1BE+1PD=4,即BE+PD=1,
∵AB=4,
∴(1)1+PE1=1×41,
解得,PE=1,
∴BE=1,
∴PD=1﹣1.
本题考查的是正方形的性质、等腰直角三角形的性质以及勾股定理的应用,正确作出辅助性、掌握正方形的性质是解题的关键.
17、(1)见解析;(2)
【解析】
(1)由在平行四边形ABCD中,AB∥DC,可得AB∥DE,又由AE∥BD,即可证得四边形 ABDE是平行四边形;
(2)由(1)易得EC=2AB,又由∠ABC=60°,可求得∠ECF=60°,然后由EF⊥BF,证得EC=2CF,即可得AB=CF,求得答案.
【详解】
(1)证明:在平行四边形中,,
,
四边形是平行四边形
(2)解:在▱ABCD中,AB=DC,在▱ABDE中,AB=ED,
∴EC=2AB
∵AB∥DC,∠ABC=60°.
∴∠ECF=∠ABC=60°.
∵EF⊥BF,
∴∠CEF=90°-∠ECF=30°,
∴EC=2CF,
∴AB=EC=CF=.
此题考查了平行四边形的判定与性质以及含30°的直角三角形的性质.注意利用有两组对边分别平行的四边形是平行四边形定理的应用是解此题的关键.
18、a(m﹣3)1.
【解析】
先提取公因式,再利用完全平方公式分解因式即可解答
【详解】
原式=a(m1﹣6m+9)
=a(m﹣3)1.
此题考查提公因式法和公式法的综合运用,解题关键在于熟练掌握运算法则
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据勾股定理求出斜边长,根据直角三角形的性质得到CM=,CN=,∠MCB=∠ECN,∠MCE=∠NCD,根据勾股定理计算即可.
【详解】
解:如图
连接CM、CN,由勾股定理得,
AB=DE=,
△ABC、△CDE是直角,三角形,M,N为斜边的中点,
CM=CN=,∠MCB=∠ECN,∠MCE=∠NCD,
∠MCN=,
MN=.
因此, 本题正确答案是:.
本题主要考查三角形的性质及计算,灵活做辅助线是解题的关键.
20、
【解析】
由一次函数的交点与二元一次方程组解的关系可知方程组的解是.
故答案为
21、1.2
【解析】
仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.
【详解】
∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,
∴该玉米种子发芽的概率为1.2,
故答案为1.2.
考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
22、对角线互相平分的四边形是平行四边形
【解析】试题解析:∵是边的中点,
∴,
∵,
∴四边形是平行四边形,
则依据:对角线互相平分的四边形是平行四边形.
故答案为:对角线互相平分的四边形是平行四边形.
23、
【解析】
利用面积法,分别以直角边为底和斜边为底,根据三角形面积相等,可以列出方程,解得答案
【详解】
解:设斜边上的高为h,
在Rt△ABC中,利用勾股定理可得:
根据三角形面积两种算法可列方程为:
解得:h=2.4cm,
故答案为2.4cm
本题考查勾股定理和利用面积法算垂线段的长度,要熟练掌握.
二、解答题(本大题共3个小题,共30分)
24、(1)(a+b+c)1=a1+b1+c1+1ab+1ac+1bc;
(1)a1+b1+c1=45;
(3)①画图见解析;②1a1+5ab+1b1=(1a+b)(a+1b).
【解析】
试题分析:(1)根据数据表示出矩形的长与宽,再根据矩形的面积公式写出等式的左边,再表示出每一小部分的矩形的面积,然后根据面积相等即可写出等式.(1)根据利用(1)中所得到的结论,将a+b+c=11,ab+bc+ac=38作为整式代入即可求出.(3)①找规律,根据公式画出图形,拼成一个长方形,使它满足所给的条件;②根据所给的规律分解因式即可.
试题解析:
(1)(a+b+c)1=a1+b1+c1+1ab+1ac+1bc;
故答案为(a+b+c)1=a1+b1+c1+1ab+1ac+1bc;
(1)a1+b1+c1=(a+b+c)1﹣1ab﹣1ac﹣1bc,
=111﹣1×38=45;
(3)
①如图所示,
②如上图所示的矩形面积=(1a+b)(a+1b),
它是由1个边长为a的正方形、5个边长分别为a、b的长方形、1个边长为b的小正方形组成,所以面积为1a1+5ab+1b1,则1a1+5ab+1b1=(1a+b)(a+1b),
故答案为1a1+5ab+1b1=(1a+b)(a+1b).
点睛:本题考查了完全平方公式的几何背景和因式分解的应用,关键是能够把代数式转化成几何图形,用到的知识点是长方形和正方形的面积公式,要认真总结规律,进行答题.
25、(1)见解析;(2)见解析;(3)ΔBEF为等腰三角形,见解析.
【解析】
(1)由平行线的性质得出∠A+∠ABC=180°,由已知得出∠C+∠ABC=180°,证出AB//BC,即可得出四边形ABCD是平行四边形;
(2)由平行四边形的性质得出BC=AD,AB//CD,得出∠CFB=∠ABF,由已知得出CF=BC,得出∠CFB=∠CBF,证出∠ABF=∠CBF即可;
(3)作FG⊥BE于G,证出FG/AD//BC,得出EG=BG,由线段垂直平分线的性质得出EF=BF即可.
【详解】
解:(1)证明:∵AD∥BC,
∴∠A+∠ABC=180°:
∵∠A=∠C
∴∠C+∠ABC=180°
∴AB∥CD
∴四边形ABCD是平行四边形
(2)证明:
∵F点为CD中点
∴CD=2CF
∴CD=2AD
∴CF=AD=BC
∴∠CFB=∠CBF
∴CD∥AB
∴∠CFB=∠FBA
∴∠FBA=∠CBF
∴BF平分∠ABC
(3)ΔBEF为等腰三角形
理由:如图,延长EF交B延长线于点G
∴DA∥BG
∴∠G=∠DEF
∵F为DC中点
∴DF=CF
又∵∠DFE=∠CFG
∴ΔDFE≌ΔCFG(AAS)
∴FE=FG
∵AD∥BC,BE⊥AD
∴BE⊥CD
∴∠EBG=90°
在RtΔEBG中,F为BG中点
∴BF=EG=EF
∴ΔBEF为等腰三角形.
本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、线段垂直平分线的性质、平行线的性质等知识;熟练掌握平行四边形的判定与性质是解题的关键/
26、 (1)平均分为80分;(2)一班的众数为90分、中位数为80分;二班的众数为70分、中位数为80分;分析见解析.
【解析】
根据平均数的定义计算可得;
根据众数和中位数的定义分别计算,再从平均分和得分的中位数相同的前提下合理解答即可.
【详解】
解:(1)一班的平均分为=80(分),
二班的平均分为 =80(分);
(2)一班的众数为90分、中位数为=80分;
二班的众数为70分、中位数为=80(分);
由于一、二班的平均分和得分的中位数均相同,而二班得分90分及以上人数多于一班,
所以二班在竞赛中成绩好于一班.
本题主要考查众数、中位数和平均数,解题的关键是掌握众数、中位数和平均数的定义.
题号
一
二
三
四
五
总分
得分
种子粒数
100
400
800
1 000
2 000
5 000
发芽种子粒数
85
318
652
793
1 604
4 005
发芽频率
0.850
0.795
0.815
0.793
0.802
0.801
得分(分)
人数(人)
班级
50
60
70
80
90
100
一班
2
5
10
13
14
6
二班
4
4
16
2
12
12
2025届山东省金乡县数学九上开学检测试题【含答案】: 这是一份2025届山东省金乡县数学九上开学检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届山东省济宁金乡县联考九上数学开学调研模拟试题【含答案】: 这是一份2025届山东省济宁金乡县联考九上数学开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
东省济宁市金乡县2023-2024学年九上数学期末监测模拟试题含答案: 这是一份东省济宁市金乡县2023-2024学年九上数学期末监测模拟试题含答案,共8页。试卷主要包含了函数y=3,下列函数中是反比例函数的是等内容,欢迎下载使用。

