|试卷下载
终身会员
搜索
    上传资料 赚现金
    山东省潍坊联考2025届数学九上开学经典模拟试题【含答案】
    立即下载
    加入资料篮
    山东省潍坊联考2025届数学九上开学经典模拟试题【含答案】01
    山东省潍坊联考2025届数学九上开学经典模拟试题【含答案】02
    山东省潍坊联考2025届数学九上开学经典模拟试题【含答案】03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省潍坊联考2025届数学九上开学经典模拟试题【含答案】

    展开
    这是一份山东省潍坊联考2025届数学九上开学经典模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若点是正比例函数图象上任意一点,则下列等式一定成立的是( )
    A.B.C.D.
    2、(4分)已知y=(k−3)x+2是一次函数,那么k的值为( )
    A.±3B.3C.−3D.±1
    3、(4分)如图,在中,于点若则等于( )
    A.B.C.D.
    4、(4分)在平行四边形中cm,cm,则平行四边形的周长为( )
    A.cmB.cmC.cmD.cm
    5、(4分)如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组的解集是( )
    A.B.C.D.
    6、(4分)如图,在中,和的平分线相交于点,过点作交于点,交于点,过点作于点,某班学生在一次数学活动课中,探索出如下结论,其中错误的是( )
    A.B.点到各边的距离相等
    C.D.设,,则
    7、(4分)下列从左到右的变形,是因式分解的是
    A.B.
    C.D.
    8、(4分)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为( )

    A.11B.16C.19D.22
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一组正整数2,4,5,从小到大排列,已知这组数据的中位数和平均数相等,那么的值是______.
    10、(4分)如图,在矩形ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,点D落在处,AF的长为___________.
    11、(4分)如图,已知:,点、、在射线上,点、、...在射线上,、、...均为等边三角形,若,则的边长为__________.
    12、(4分)如图,直线y=-x+4分别与x轴,y轴交于点A,B,点C在直线AB上,D是y轴右侧平面内一点,若以点O,A,C,D为顶点的四边形是菱形,则点D的坐标是_______________.
    13、(4分)超速行驶是交通事故频发的主要原因之一.交警部门统计某天 7:00—9:00 经过高速公路某测速点的汽车的速度,得到频数分布折线图.若该路段汽车限速为110km/h,则超速行驶的汽车有_________辆.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在平面直角坐标系中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”.例如,点P(1,4)的“3级关联点”为Q(3×1+4,1+3×4),即Q(7,13).
    (1)已知点A(-2,6)的“级关联点”是点A1,点B的“2级关联点”是B1(3,3),求点A1和点B的坐标;
    (2)已知点M(m-1,2m)的“-3级关联点”M′位于y轴上,求M′的坐标;
    (3)已知点C(-1,3),D(4,3),点N(x,y)和它的“n级关联点”N′都位于线段CD上,请直接写出n的取值范围.
    15、(8分)在四边形ABCD中,E、F分别是边BC、CD的中点,连接AE,AF.
    (1)如图1,若四边形ABCD的面积为5,则四边形AECF的面积为____________;
    (2)如图2,延长AE至G,使EG=AE,延长AF至H,使FH=AF,连接BG、GH、HD、DB.
    求证:四边形BGHD是平行四边形;
    (3)如图3,对角线 AC、BD相交于点M, AE与BD交于点P, AF与BD交于点N. 直接写出BP、PM、MN、ND的数量关系.
    16、(8分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).
    设这种双肩包每天的销售利润为w元.
    (1)求w与x之间的函数解析式;
    (2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
    (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?
    17、(10分)计算:+--
    18、(10分)如图,在平面直角坐标系中,四边形为正方形,已知点、,点、在第二象限内.
    (1)点的坐标___________;
    (2)将正方形以每秒个单位的速度沿轴向右平移秒,若存在某一时刻,使在第一象限内点、两点的对应点、正好落在某反比例函数的图象上,请求出此时的值以及这个反比例函数的解析式;
    (3)在(2)的情况下,问是否存在轴上的点和反比例函数图象上的点,使得以、、、四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点、的坐标;若不存在,请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)分解因式:x2-2x+1=__________.
    20、(4分)如图,平行四边形ABCD中,∠B=60°,AB=8cm,AD=10cm,点P在边BC上从B向C运动,点Q在边DA上从D向A运动,如果P,Q运动的速度都为每秒1cm,那么当运动时间t=_____秒时,四边形ABPQ是直角梯形.
    21、(4分)比较大小:__________-1.(填“”、“”或“”)
    22、(4分)如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是______.
    23、(4分)在平行四边形ABCD中,,则的度数是______°.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图1,已知正方形ABCD的边长为6,E是CD边上一点(不与点C 重合),以CE为边在正方形ABCD的右侧作正方形CEFG,连接BF、BD、FD.
    (1)当点E与点D重合时,△BDF的面积为 ;当点E为CD的中点时,△BDF的面积为 .
    (2)当E是CD边上任意一点(不与点C重合)时,猜想S△BDF与S正方形ABCD之间的关系,并证明你的猜想;
    (3)如图2,设BF与CD相交于点H,若△DFH的面积为,求正方形CEFG的边长.
    25、(10分)如图1,已知△ABC,AB=AC,以边AB为直径的⊙O交BC于点D,交AC于点E,连接DE.
    (1)求证:DE=DC.
    (2)如图2,连接OE,将∠EDC绕点D逆时针旋转,使∠EDC的两边分别交OE的延长线于点F,AC的延长线于点G.试探究线段DF、DG的数量关系.
    26、(12分)一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).
    (1)由图可知,不等式kx+b>0的解集是 ;
    (2)若不等式kx+b>﹣4x+a的解集是x>1.
    ①求点B的坐标;
    ②求a的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    由函数图象与函数表达式的关系可知,点A满足函数表达式,可将点A的坐标代入函数表达式,得到关于a、b的等式;再根据等式性质将关于a、b的等式进行适当的变形即可得出正确选项.
    【详解】
    ∵点A(a,b)是正比例函数图象上的一点,
    ∴,
    ∴2a+3b=0.
    故选A
    本题考查函数图象上点的坐标与函数关系式的关系,等式的基本性质,能根据等式的基本性质进行适当变形是解决本题的关键.
    2、C
    【解析】
    根据题意直接利用一次函数的定义,进行分析得出k的值即可.
    【详解】
    解:∵y=(k−2)x+2是一次函数,
    ∴|k|-2=2,k-2≠0,
    解得:k=-2.
    故选:C.
    本题主要考查一次函数的定义,注意掌握一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为2.
    3、B
    【解析】
    根据平行四边形的性质和三角形的内角和定理求解.
    【详解】
    在中,于点



    在中,
    故选:B
    本题考查了平行四边形的性质和三角形内角和定理,解题的关键在于把已知角转化到中求解.
    4、D
    【解析】
    根据平行四边形的性质得出对边相等,进而得出平行四边形ABCD的周长.
    【详解】
    解:∵平行四边形ABCD中,AD=4cm,AB=3cm,
    ∴AD=BC=4cm,AB=CD=3cm,
    则行四边形ABCD的周长为:3+3+4+4=14(cm).
    故选:D.
    此题主要考查了平行四边形的性质,熟练掌握平行四边形对边之间的关系是解题关键.
    5、A
    【解析】
    由于一次函数y1同时经过A、P两点,可将它们的坐标分别代入y1的解析式中,即可求得k、b与m的关系,将其代入所求不等式组中,即可求得不等式的解集.
    【详解】
    由于直线y1=kx+b过点A(0,2),P(1,m),
    则有:
    解得 .
    ∴直线y1=(m−2)x+2.
    故所求不等式组可化为:
    mx>(m−2)x+2>mx−2,
    不等号两边同时减去mx得,0>−2x+2>−2,
    解得:1故选A.
    本题属于对函数取值的各个区间的基本情况的理解和运用
    6、C
    【解析】
    利用角平分线的性质、等腰三角形的判定与性质逐一判定即可.
    【详解】
    ∵在△ABC中,∠ABC和∠ACB的平分线相交于点O
    ∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,
    ∴∠OBC+∠OCB=90°-∠A
    ∴∠BOC=180°-(∠OBC+∠OCB)=90°+∠A,故C错误;
    ∵∠EBO=∠CBO,∠FCO=∠BCO,
    ∴∠EBO=∠EOB,∠FCO=∠FOC,
    ∴BE=OE,CF=OF
    ∴EF=EO+OF=BE+CF,故A正确;
    由已知,得点O是的内心,到各边的距离相等,故B正确;
    作OM⊥AB,交AB于M,连接OA,如图所示:
    ∵在△ABC中,∠ABC和∠ACB的平分线相交于点O
    ∴OM=
    ∴,故D选项正确;
    故选:C.
    此题主要考查运用角平分线的性质、等腰三角形的判定与性质,解题关键是注意数形结合思想的运用.
    7、D
    【解析】
    把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.
    【详解】
    根据因式分解的定义得:从左边到右边的变形,是因式分解的是.其他不是因式分解:A,C右边不是积的形式,B左边不是多项式.
    故选D.
    本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.
    8、D
    【解析】
    阴影部分的周长为AD+DE+EA+EB′+B′C+EC,
    =AD+DE+EC+EA+EB′+B′C,
    =AD+DC+AB′+B′C,
    =3+8+8+3
    =1.
    故选D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据这组数据的中位数和平均数相等,得出(4+5)÷2=(2+4+5+x)÷4,求出x的值即可.
    【详解】
    ∵这组数据的中位数和平均数相等,
    ∴(4+5)÷2=(2+4+5+x)÷4,
    解得:x=1.
    故答案为:1.
    此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,关键是根据中位数和平均数相等列出方程.
    10、
    【解析】
    根据对折之后对应边长度相同,联立直角三角形中勾股定理即可求解.
    【详解】

    ∵矩形纸片中,,
    现将其沿对折,使得点C与点A重合,点D落在处,
    ∴ ,
    在中,,
    即 解得 ,
    故答案为:.
    本题考查了矩形的性质和勾股定理的应用,解题的关键在于找到对折之后对应边相等关系和勾股定理中的等量关系.
    11、
    【解析】
    根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2…进而得出答案
    【详解】
    解:如图
    ∵△A1B1A2是等边三角形,
    ∴A1B1=A2B1,∠3=∠4=∠12=60°,
    ∴∠2=120°,
    ∵∠MON=30°,
    ∴∠1=180°-120°-30°=30°,
    又∵∠3=60°,
    ∴∠5=180°-60°-30°=90°,
    ∵∠MON=∠1=30°,
    ∴OA1=A1B1=a,
    ∴A2B1=a,
    ∵△A2B2A3、△A3B3A4是等边三角形,
    ∴∠11=∠10=60°,∠13=60°,
    ∵∠4=∠12=60°,
    ∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
    ∴∠1=∠6=∠7=30°,∠5=∠8=90°,
    ∴A2B2=2B1A2,B3A3=2B2A3,
    ∴A3B3=4B1A2=4a,
    A4B4=8B1A2=8a,
    A5B5=16B1A2=16a,
    以此类推:A6B6=32B1A2=32a.
    故答案为:32a.
    此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.
    12、(2,−2)或(6,2).
    【解析】
    设点C的坐标为(x,-x+4).分两种情况,分别以C在x轴的上方、C在x轴的下方做菱形,画出图形,根据菱形的性质找出点C的坐标即可得出D点的坐标.
    【详解】
    ∵一次函数解析式为线y=-x+4,
    令x=0,解得y=4
    ∴B(0,4),
    令y=0,解得x=4
    ∴A(4,0),
    如图一,∵四边形OADC是菱形,
    设C(x,-x+4),
    ∴OC=OA=,
    整理得:x2−6x+8=0,
    解得x1=2,x2=4,
    ∴C(2,2),
    ∴D(6,2);
    如图二、如图三,∵四边形OADC是菱形,
    设C(x,-x+4),
    ∴AC=OA=,
    整理得:x2−8x+12=0,
    解得x1=2,x2=6,
    ∴C(6,−2)或(2,2)
    ∴D(2,−2)或(−2,2)
    ∵D是y轴右侧平面内一点,故(−2,2)不符合题意,
    故答案为(2,−2)或(6,2).
    本题考查了一次函数图象上点的坐标特征以及菱形的性质,解题的关键是确定点C、D的位置.本题属于中档题,难度不大,在考虑菱形时需要分类讨论.
    13、80.
    【解析】
    根据图中的信息,找到符合条件的数据,进行计算即可.
    【详解】
    解:读图可知,超过限速110km/h的汽车有60+20=80(辆).
    故答案为80.
    本题考查读取频数分布折线图和利用统计图获取信息的能力,对此类问题,必须要认真观察统计图、分析比较,充分利用图中的数据,从而作出正确判断.
    三、解答题(本大题共5个小题,共48分)
    14、(1)(1,1)(2)(0,﹣16)(3)
    【解析】
    (1)根据关联点的定义,结合点的坐标即可得出结论;(2)根据关联点的定义和点M(m﹣1,2m)的“﹣3级关联点”M′位于y轴上,即可求出M′的坐标;(3)因为点C(﹣1,3),D(4,3),得到y=3,由点N(x,y)和它的“n级关联点”N′都位于线段CD上,可得到方程组,解答即可.
    【详解】
    (1)∵点A(﹣2,6)的“级关联点”是点A1,
    ∴A1(﹣2×+6,﹣2+×6),
    即A1(5,1).
    设点B(x,y),
    ∵点B的“2级关联点”是B1(3,3),

    解得
    ∴B(1,1).
    (2)∵点M(m﹣1,2m)的“﹣3级关联点”为M′(﹣3(m﹣1)+2m,m﹣1+(﹣3)×2m),
    M′位于y轴上,
    ∴﹣3(m﹣1)+2m=0,
    解得:m=3
    ∴m﹣1+(﹣3)×2m=﹣16,
    ∴M′(0,﹣16).
    (3)∵点N(x,y)和它的“n级关联点”N′都位于线段CD上,
    ∴N′(nx+y,x+ny),
    ∴ , ,
    ∴x=3-3n,
    ∴,解得.
    本题考查了一次函数图象上的坐标的特征,“关联点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    15、(1)(2)证明见解析(3).
    【解析】
    (1)连接AC,根据三角形中线把三角形分成两个面积相等的三角形进行解答即可得;
    (2)连接EF,根据三角形中位线定理可得到BD与GH平行且相等,由此即可得证;
    (3)如图,延长PE至点Q,使EQ=EP,连接CQ,延长NF至点O,使OF=NG,连接CO,通过证明△BPE≌△CQE可得BP=CQ,BP//CQ,同理:CO=ND,CO//ND,从而可得Q、C、O三点共线,继而通过证明△APM∽△AQC,可得PM:CQ=AM:AC,同理:MN:CO=AM:AC,即可得答案.
    【详解】
    (1)如图,连接AC,则有S△ABC+S△ACD= S四边形ABCD=5,
    ∵E、F分别为BC、CD中点,
    ∴S△AEC=S△ABC,S△AFC=S△ADC,
    ∴S四边形AECF=S△AEC+S△AFC=S△ABC+S△ADC= S四边形ABCD=,
    故答案为:;

    (2)如图,连接EF,
    ∵E、F分别是BC,CD的中点,
    ∴EF∥BD,EF=BD.,
    ∵EG=AE,FH=AF,
    ∴EF∥GH,EF=GH.,
    ∴BD∥GH,BD=GH.,
    ∴四边形BGHD是平行四边形;
    (3)如图,延长PE至点Q,使EQ=EP,连接CQ,
    延长NF至点O,使OF=NG,连接CO,
    在△BPE和△CQE中

    ∴△BPE≌△CQE(SAS),
    ∴BP=CQ,∠PBE=∠QCE,
    ∴BP//CQ,
    同理:CO=ND,CO//ND,
    ∴Q、C、O三点共线,
    ∴BD//OQ,
    ∴△APM∽△AQC,
    ∴PM:CQ=AM:AC,
    同理:MN:CO=AM:AC,
    ∴.
    本题考查了三角形中线的性质、三角形中位线定理、平行四边形的判定、全等三角形的判定与性质、相似三角形的判定与性质等,综合性较强,熟练掌握相关知识、正确添加辅助线是解题的关键.
    16、(1)w=-x2+90x-1800;(2)当x=45时,w有最大值,最大值是225(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元
    【解析】试题分析:(1)根据销售利润=单个利润×销售量,列出式子整理后即可得;
    (2)由(1)中的函数解析式,利用二次函数的性质即可得;
    (3)将w=200代入(1)中的函数解析式,解方程后进行讨论即可得.
    试题解析:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,
    w与x之间的函数解析式w=﹣x2+90x﹣1800;
    (2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,
    ∵﹣1<0,
    当x=45时,w有最大值,最大值是225;
    (3)当w=200时,﹣x2+90x﹣1800=200,
    解得x1=40,x2=50,
    ∵50>42,x2=50不符合题意,舍去,
    答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.
    17、2+3
    【解析】
    根据二次根式的运算法则即可求出答案.
    【详解】
    原式=4+3﹣﹣ =2+3
    本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算,本题属于基础题型.
    18、(1)点坐标为;(2),;(3)存在,,或,或,
    【解析】
    (1)证明△DFA≌△AEB(AAS),则DF=AE=3,BE=AF=1,即可求解;
    (2)t秒后,点D′(−7+2t,3)、B′(−3+2t,1),则k=(−7+2t)×3=(−3+2t)×1,即可求解;
    (3)分为平行四边形的一条边时和为平行四边形对角线时两种情况,分别求解即可.
    【详解】
    解:(1)过点、分别作轴、轴交于点、,
    ,,,
    又,,,,,
    点坐标为;
    (2)秒后,点、,
    则,解得:,则,
    (3)存在,理由:
    设:点,点,,
    ①在第一象限,且为平行四边形的一条边时,图示平行四边形,点向左平移个单位、向上平移个单位得到点,
    同理点向左平移个单位、向上平移个单位为得到点,即:,,,
    解得:,,,
    故点、点;
    ②在第一象限,且当为平行四边形对角线时,图示平行四边形,中点坐标为,
    该中点也是的中点,
    即:,,,
    解得:,,,
    故点、;
    ③在第三象限,且当为平行四边形的一条边时,图示平行四边形,点向左平移个单位、向上平移个单位得到点,
    同理点向右平移个单位、向下平移个单位为得到点,即:,,,
    解得:,,,
    故点、点;
    综上:,或,或,
    本题考查的是反比例函数综合运用,涉及到三角形全等、图形平移等知识点,其中(3),要通过画图确定图形可能的位置再求解,避免遗漏.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(x-1)1.
    【解析】
    由完全平方公式可得:
    故答案为.
    错因分析 容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.
    20、1
    【解析】
    过点A作AE⊥BC于E,因为AD∥BC,所以当AE∥QP时,则四边形ABPQ是直角梯形,利用已知条件和路程与速度的关系式即可求出时间t的值
    【详解】
    解:
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    过点A作AE⊥BC于E,
    ∴当AE∥QP时,则四边形ABPQ是直角梯形,
    ∵∠B=60°,AB=8cm,
    ∴BE=4cm,
    ∵P,Q运动的速度都为每秒1cm,
    ∴AQ=10﹣t,AP=t,
    ∵BE=4,
    ∴EP=t﹣4,
    ∵AE⊥BC,AQ∥EP,AE∥QP,
    ∴QP⊥BC,AQ⊥AD,
    ∴四边形AEPQ是矩形,
    ∴AQ=EP,
    即10﹣t=t﹣4,
    解得t=1,
    故答案为:1.
    此题考查直角梯形,平行四边形的性质,解题关键在于作辅助线
    21、
    【解析】
    先由,得到>,再利用两个负实数绝对值大的反而小得到结论.
    【详解】
    解:∵>,
    ∴,
    ∴>.
    故答案为:
    本题考查了实数大小的比较,关键要熟记实数大小的比较方法:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.
    22、1
    【解析】
    延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△ABD的面积.
    【详解】
    解:延长AD到点E,使DE=AD=6,连接CE,
    ∵AD是BC边上的中线,
    ∴BD=CD,
    在△ABD和△CED中,

    ∴△ABD≌△CED(SAS),
    ∴CE=AB=5,∠BAD=∠E,
    ∵AE=2AD=12,CE=5,AC=13,
    ∴CE2+AE2=AC2,
    ∴∠E=90°,
    ∴∠BAD=90°,
    即△ABD为直角三角形,
    ∴△ABD的面积=AD•AB=1.
    故答案为1.
    本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形.
    23、100°
    【解析】
    如图所示:
    ∵四边形ABCD是平行四边形,
    ∴∠A=∠C,∠A+∠B=180°,
    ∵∠A+∠C=160°,
    ∴∠A=∠C=80°,
    ∴∠B的度数是:100°.
    故答案是:100°.
    二、解答题(本大题共3个小题,共30分)
    24、(1)1,1;(2)S△BDF=S正方形ABCD,证明见解析;(3)2
    【解析】
    (1)根据三角形的面积公式求解;
    (2)连接CF,通过证明BD∥CF,可得S△BDF=S△BDC=S正方形ABCD;
    (3)根据S△BDF= S△BDC可得S△BCH= S△DFH=,由三角形面积公式可求CH,DH的长,再由三角形面积公式求出EF的长即可.
    【详解】
    (1)∵当点E与点D重合时,
    ∴CE=CD=6,
    ∵四边形ABCD,四边形CEFG是正方形,
    ∴DF=CE=AD=AB=6,
    ∴S△BDF=×DF×AB=1,
    当点E为CD的中点时,如图,连接CF,
    ∵四边形ABCD和四边形CEFG均为正方形;
    ∴∠CBD=∠GCF=25°,
    ∴BD∥CF,
    ∴S△BDF=S△BDC=S正方形ABCD=×6×6=1,
    故答案为:1,1.
    (2)S△BDF=S正方形ABCD,
    证明:连接CF.
    ∵四边形ABCD和四边形CEFG均为正方形;
    ∴∠CBD=∠GCF=25°,
    ∴BD∥CF,
    ∴S△BDF= S△BDC=S正方形ABCD;
    (3)由(2)知S△BDF= S△BDC,
    ∴S△BCH= S△DFH=,
    ∴,
    ∴,,
    ∴,
    ∴EF=2,
    ∴正方形CEFG的边长为2.
    本题是四边形综合题,考查了正方形的性质,三角形的面积公式,平行线的性质,灵活运用这些性质进行推理是本题的关键.
    25、(1)证明见试题解析;(2)DF=DG.
    【解析】
    (1)利用院内接四边形的性质得到∠DEC=∠B,然后利用等角对等边得到结论.
    (2)利用旋转的性质及圆内接四边形的性质证得△EDF≌△CDG后即可得到结论.
    【详解】
    (1)∵四边形ABDE内接于⊙O,
    ∴∠B+∠AED=180°,
    ∵∠DEC+∠AED=180°,
    ∴∠DEC=∠B,
    ∵AB=AC,
    ∴∠C=∠B,
    ∴∠DEC=∠C,
    ∴DE=DC;
    (2)∵四边形ABDE内接于⊙O,
    ∴∠A+∠BDE=180°,
    ∵∠EDC+∠BDE=180°,
    ∴∠A=∠EDC,
    ∵OA=OE,∴∠A=∠OEA,
    ∵∠OEA=∠CEF,∴∠A=∠CEF,∴∠EDC=∠CEF,
    ∵∠EDC+∠DEC+∠DCE=180°,∴∠CEF+∠DEC+∠DCE=180°,即∠DEF+∠DCE=180°,
    又∵∠DCG+∠DCE=180°,∴∠DEF=∠DCG,
    ∵∠EDC旋转得到∠FDG,∴∠EDC=∠FDG,
    ∴∠EDC﹣∠FDC=∠FDG﹣∠FDC,即∠EDF=∠CDG,
    ∵DE=DC,∴△EDF≌△CDG(ASA),
    ∴DF=DG.
    26、(1)x>﹣2;(2)①(1,6);②2.
    【解析】
    (1)求不等式kx+b>0的解集,找到x轴上方的范围就可以了,比C点横坐标大就行了
    (2)①我们可以先根据B,C两点求出k值,因为不等式kx+b>﹣4x+a的解集是x>1
    所以B点横坐标为1,利用x=1代入y1=kx+b,即求出B点的坐标;
    ②将B点代入y2=﹣4x+a中即可求出a值.
    【详解】
    解:(1)∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,
    ∴不等式kx+b>0的解集是x>﹣2,
    故答案为:x>﹣2;
    (2)①∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,
    ∴ ,得,
    ∴一次函数y1=2x+4,
    ∵不等式kx+b>﹣4x+a的解集是x>1,
    ∴点B的横坐标是x=1,
    当x=1时,y1=2×1+4=6,
    ∴点B的坐标为(1,6);
    ②∵点B(1,6),
    ∴6=﹣4×1+a,得a=2,
    即a的值是2.
    本题主要考查学生对于一次函数图像性质的掌握程度
    题号





    总分
    得分
    相关试卷

    山东省日照莒县联考2024-2025学年数学九上开学经典模拟试题【含答案】: 这是一份山东省日照莒县联考2024-2025学年数学九上开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省临沂平邑县联考2024年数学九上开学经典模拟试题【含答案】: 这是一份山东省临沂平邑县联考2024年数学九上开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东省潍坊市青州市益都中学数学九上开学经典模拟试题【含答案】: 这是一份2025届山东省潍坊市青州市益都中学数学九上开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map